Log in

Theoretical Studies on the Electronic Structure of Nano-graphenes for Applications in Nonlinear Optics

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

In this work, azulene is introduced into nano-graphene with coronene center to enhance the second-order nonlinear optical (NLO) properties. The sum-over-states(SOS) model based calculations demonstrate that dipolar contributions are larger than octupolar contributions to the static first hyperpolarizability(〈β0〉) in most nano-graphenes except those with high symmetry(e.g., a C2v nano-graphene has octupolar contributions ΦJ=3 up to 59.0% of the 〈β0〉). Nano-graphenes containing two parallel orientating azulenes (i.e., Out-P and Out-Ps) have large dipole moments, while their ground state is triplet. Introducing B/N/BN atoms into the positions with a high spin density transfers the ground state of Out-P and Out-Ps to closed-shell singlet, and the Out-Ps-2N has a large 〈β0〉 of 1621.67×10−30 esu. Further addition of an electron donor(NH2) at the pentagon end enhances the 〈β0〉 to 1906.22×10−30 esu. The two-dimensional second-order NLO spectra predicted by using the SOS model find strong sum frequency generations and difference frequency generations, especially in the near-infrared and visible regions. The strategies to stabilize the electronic structure and improve the NLO properties of azulene-defect carbon nanomaterials are proposed, and those strategies to engineer nano-graphenes to be semiconducting while maintaining the π-framework are extendable to other similar systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Canioni L., Bellec M., Royon A., Bousquet B., Cardinal T., Opt. Lett., 2008, 33, 360

    Article  PubMed  Google Scholar 

  2. Cotter D., Blow R. J., Ellis A. D., Kelly A. E., Nesset D., Phillips I. D., Poustie A. J., Rogers D. C., Science, 1999, 286, 1523

    Article  CAS  PubMed  Google Scholar 

  3. Min W., Freudiger C. W., Lu S., **e X. S., Annu. Rev. Phys. Chem., 2011, 62, 507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pintre I. C., Serrano J. L., Ros M. B., Martíenez-Perdiguero J., Alonso I., Ortega J., Folcia C. L., Etxebarria J., Alicante R., Villacampa B., J. Mater. Chem., 2010, 20, 2965

    Article  CAS  Google Scholar 

  5. Fanti M., Orlandi G., Zerbetto F., J. Am. Chem. Soc., 1995, 117, 6101

    Article  CAS  Google Scholar 

  6. Feng M., Zhan H. B., Chen Y., Appl. Phys. Lett., 2010, 96, 033107

    Article  CAS  Google Scholar 

  7. Wang J., Hernandez Y., Lotya M., Coleman J. N., Blau W. J., Adv. Mater., 2009, 21, 2430

    Article  CAS  Google Scholar 

  8. Cao L., Sahu S., Anilkumar P., Kong C. Y., Sun Y. P., MRS Bull., 2012, 37, 1283

    Article  CAS  Google Scholar 

  9. Liu Z. B., Zhang X. L., Chen Y. S., Tian J. G., Chin. Sci. Bull., 2012, 57, 2971

    Article  CAS  Google Scholar 

  10. Wang J., Chen Y., Blau W. J., J. Mater. Chem., 2009, 19, 7425

    Article  CAS  Google Scholar 

  11. Paul D., Deb J., Sarkar, U., ChemistrySelect, 2020, 5, 6987

    Article  CAS  Google Scholar 

  12. Loboda O., Zalésny R., Avramopoulos A., Luis J. M., Kirtman B., Tagmatarchis N., Reis H., Papadopoulos M. G., J. Phys. Chem. A, 2009, 113, 1159

    Article  CAS  PubMed  Google Scholar 

  13. Zhou Z. J., Yu G. T., Ma F., Huang X. R., Wu Z. J., Li Z. R., J. Mater. Chem. C, 2014, 2, 306

    Article  CAS  Google Scholar 

  14. Karamanis P., Otero N., Pouchan C., J. Am. Chem. Soc., 2014, 136, 7464

    Article  CAS  PubMed  Google Scholar 

  15. Pegu D., Deb J., Alsenoy C. V., Sarkar U., Spectrosc. Lett., 2017, 50, 232

    Article  CAS  Google Scholar 

  16. Deb J., Saha S. K., Paul M. K., Sarkar U., J. Mol. Struct., 2018, 1160, 167

    Article  CAS  Google Scholar 

  17. Deb J., Paul D., Sarkar U., AIP Conference Proceedings, 2019, 2115, 030169

    Article  CAS  Google Scholar 

  18. Melcamu Y. Y., Wena S. Z., Yan L. K, Zhang T., Su Z. M., Mol. Simul., 2013, 39, 214

    Article  CAS  Google Scholar 

  19. Dalton L. R., Harper A. W., Ghosn R., Chem. Mater., 1995, 7, 1060

    Article  CAS  Google Scholar 

  20. Wang W. L., Kan Y. H., Wang L., Sun S. L., Qiu Y. Q., J. Phys. Chem. C, 2014, 118, 28746

    Article  CAS  Google Scholar 

  21. Priyadarshy S., Therien M. J., Beratan D. N., J. Am. Chem. Soc., 1996, 118, 1504

    Article  Google Scholar 

  22. Clays K., Hendrickx E., Verbiest T., Persoons A., Adv. Mater., 1998, 10, 643

    Article  CAS  Google Scholar 

  23. Zyss J., Ledoux I., Chem. Rev., 1994, 94, 77

    Article  CAS  Google Scholar 

  24. Vivas M. G., Silva D. L., Rodriguez R. D. F., Canuto S., Malinge J., Ishow E., Mendonca C. R., De Boni L., J. Phys. Chem. C, 2015, 119, 12589

    Article  CAS  Google Scholar 

  25. Bella S. D., Colombo A., Dragonetti C., Righetto S., Roberto D., Inorganics, 2018, 6, 133

    Article  CAS  Google Scholar 

  26. Li W. Q., Zhou X., Tian W. Q., Sun X. D., Phys. Chem. Chem. Phys., 2013, 15, 1810

    Article  CAS  PubMed  Google Scholar 

  27. Li W. Q., Hu Y. Y., Zhong C., Zhou X., Wang M. Q., Tian W. Q., Goddard J. D., J. Mater. Chem. C, 2016, 4, 6054.

    Article  CAS  Google Scholar 

  28. Zhu Z. Z., Chen Z. C., Yao Y. R., Cui C. H., Li S. H., Zhao X. J., Zhang Q. Y., Tian H. R., Xu P. Y., **e F. F., **e X. M., Tan Y. Z., Deng S. L., Quimby J. M., Scott L. T., **e S. Y., Huang R. B., Zheng L. S., Sci. Adv., 2019, 5, eaaw0982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Deb J., Paul D., Sarkar U., J. Phys. Chem. A, 2020, 124, 1312

    Article  CAS  PubMed  Google Scholar 

  30. Dai Y. F., Li Z. Y., Yang J. L., J. Phys. Chem. C, 2014, 118, 3313

    Article  CAS  Google Scholar 

  31. Yang C.-C., He Y.-Y., Zheng X.-L., Chen J., Yang L., Li W.-Q., Tian W. Q., J. Mater. Chem. C, 2020, 8, 1879

    Article  CAS  Google Scholar 

  32. Kapko V., Drabold D. A., Thorpe M. F., Phys. Status Solidi B, 2010, 247, 1197

    Article  CAS  Google Scholar 

  33. Kawasumi K., Zhang Q. Y., Segawa Y., Scott L. T., Itami K., Nat. Chem., 2013, 5, 739

    Article  CAS  PubMed  Google Scholar 

  34. Dai Y. F., Li Z. Y., Yang J. L., Carbon, 2016, 100, 428

    Article  CAS  Google Scholar 

  35. Cui C. X., Tian Y., Zhang Y. P., Qu L. B., Lan Y., Carbon, 2019, 143, 385

    Article  CAS  Google Scholar 

  36. Wheland G. W., Mann D. E., J. Chem. Phys., 1949, 17, 264

    Article  CAS  Google Scholar 

  37. Guo J. J., Morris J. R., Ihm Y., Contescu C. I., Gallego N. C., Duscher G., Pennycook S. J., Chisholm M. F., Small, 2012, 8, 3283

    Article  CAS  PubMed  Google Scholar 

  38. He Y.-Y., Chen J., Zheng X.-L., Xu X. D., Li W.-Q., Yang L., Tian W. Q., ACS Appl. Nano Mater., 2019, 2, 1648

    Article  CAS  Google Scholar 

  39. Yazyev O. V., Louie S. G., Nat. Mater., 2010, 9, 806

    Article  CAS  PubMed  Google Scholar 

  40. Wei Y. J., Wu J. T., Yin H. Q., Shi X. H., Yang R. G., Dresselhaus M., Nat. Mater., 2012, 11, 759

    Article  CAS  PubMed  Google Scholar 

  41. Ma J., Fu Y. B., Dmitrieva E., Liu F., Komber H., Hennersdorf F., Popov A. A., Weigand J. J., Liu J. Z., Feng X. L., Angew. Chem. Int. Ed., 2020, 59, 5637

    Article  CAS  Google Scholar 

  42. Han Y., Xue Z. B., Li G. W., Gu Y. W., Ni Y., Dong S. Q., Chi C. Y., Angew. Chem. Int. Ed., 2020, 59, 9026

    Article  CAS  Google Scholar 

  43. Zhang X. S., Huang Y. Y., Zhang J., Meng W., Peng Q., Kong R. R., **ao Z. W., Liu J., Huang M. F., Yi Y. Q., Chen L. L., Fan Q. R., Lin G. B., Liu Z. T., Zhang G. X., Jiang L., Zhang D. Q., Angew. Chem. Int. Ed., 2020, 59, 3529

    Article  CAS  Google Scholar 

  44. Ito S., Inabe H., Morita N., Ohta K., Kitamura T., Imafuku K., J. Am. Chem. Soc., 2003, 125, 1669

    Article  CAS  PubMed  Google Scholar 

  45. Ito S., Ando M., Nomura A., Morita N., Kabuto C., Mukai H., Ohta K., Kawakami J., Yoshizawa A., Tajiri A., J. Org. Chem., 2005, 70, 3939

    Article  CAS  PubMed  Google Scholar 

  46. Wang X. Y., Yao X. L., Müllen K., Sci. China: Chem., 2019, 62, 1099

    Article  CAS  Google Scholar 

  47. Feng X. L., Pisula W., Müllen K., Pure Appl. Chem., 2009, 81, 2203

    Article  CAS  Google Scholar 

  48. Adamo C., Barone V., J. Chem. Phys., 1999, 110, 6158

    Article  CAS  Google Scholar 

  49. Hehre W. J., Ditchfield R., Pople J. A., J. Chem. Phys., 1972, 56, 2257

    Article  CAS  Google Scholar 

  50. Hariharan P. C., Pople J. A., Theoret. Chim. Acta, 1973, 28, 213

    Article  CAS  Google Scholar 

  51. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Keith T., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas O., Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J., Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford, CT, 2013

    Google Scholar 

  52. Ridley J., Zerner M., Theoret. Chim. Acta, 1973, 32, 111

    Article  CAS  Google Scholar 

  53. Orr B. J., Ward J. F., Mol. Phys., 1971, 20, 513

    Article  CAS  Google Scholar 

  54. Bishop D. M., J. Chem. Phys., 1994, 100, 6535

    Article  CAS  Google Scholar 

  55. Tian W. Q., J. Comput. Chem., 2012, 33, 466

    Article  CAS  PubMed  Google Scholar 

  56. Tian W. Q., LinSOSProNLO, V1.01, Registration No. 2017SR526488 and Classification No. 30219-7500. Copyright Protection Center of China: Bei**g, China

  57. Beljonne D., Cornil J., Shuai Z., Brédas J.-L., Rohlfing F., Bradlley D. D. C., Torruellas W. E., Ricci V., Stegeman G. I., Phys. Rev. B: Condens. Matter Mater. Phys., 1997, 55, 1505

    Article  CAS  Google Scholar 

  58. Lalama S. J., Garito A. F., Phys. Rev. A: At., Mol., Opt. Phys., 1979, 20, 1179

    Article  CAS  Google Scholar 

  59. Otero N., Pouchan C., Karamanis P., J. Mater. Chem. C, 2017, 5, 8273

    Article  CAS  Google Scholar 

  60. Pierce B. M., J. Chem. Phys., 1989, 91, 791

    Article  CAS  Google Scholar 

  61. Lehtinen O., Vats N., Algara-Siller G., Knyrim P., Kaiser U., Nano Lett., 2015, 15, 235

    Article  CAS  PubMed  Google Scholar 

  62. Gao X., Zhou Z., Zhao Y., Nagase S., Zhang S. B., Chen Z., J. Phys. Chem. C, 2008, 112, 12677

    Article  CAS  Google Scholar 

  63. Zhang L., Qi D., Zhao L., Chen C., Bian Y., Li W., J. Phys. Chem. A, 2012, 116, 10249

    Article  CAS  PubMed  Google Scholar 

  64. Arturo J. S., Itzel I. M., Gabriel R. O., Jesús R. R., Norberto F., Rosa S., J. Phys. Chem. A, 2016, 120, 4314

    Article  CAS  Google Scholar 

  65. Lu T., Chen F., J. Comput. Chem., 2012, 33, 580

    Article  PubMed  CAS  Google Scholar 

  66. Solà M., Front. Chem., 2013, 1, 1

    Article  CAS  Google Scholar 

  67. Saha B., Bhattacharyya P. K., ACS Omega, 2018, 3, 16753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ito S., Tokimaru Y., Nozaki K., Angew. Chem. Int. Ed., 2015, 54, 1

    Article  CAS  Google Scholar 

  69. Liu Z. Q., Marder T. B., Angew. Chem. Int. Ed., 2008, 47, 242

    Article  CAS  Google Scholar 

  70. Wang J. H., Zubarev D. Y., Philpott M. R., Vukovic S., Lester W. A., Cui T., Kawazoe Y., Phys. Chem. Chem. Phys., 2010, 12, 9839

    Article  CAS  PubMed  Google Scholar 

  71. Plasser F., Pašalić H., Gerzabek M. H., Libisch F., Reiter R., Burgdçrfer J., Müller T., Shepard R., Lischka H., Angew. Chem. Int. Ed., 2013, 52, 2581

    Article  CAS  Google Scholar 

  72. Jiang D. E., Dai S., Chem. Phys. Lett., 2008, 466, 72

    Article  CAS  Google Scholar 

  73. Tan Y. Z., Yang B., Parvez K., Narita A., Osella S., Beljonne D., Feng X. L., Müllen K., Nat. Commun., 2013, 4, 2646

    Article  PubMed  CAS  Google Scholar 

  74. Dai Y. F., Li Z. Y., Yang J. L., ChemPhysChem, 2015, 16, 2783

    Article  CAS  PubMed  Google Scholar 

  75. Agrawal G. P., Cojan C., Flytzanis C., Phys. Rev. B: Condens. Matter Mater. Phys., 1978, 17, 776

    Article  CAS  Google Scholar 

  76. Kato K., Lin H. A., Kuwayama M., Nagase M., Segawa Y., Scottd L. T., Itami K., Chem. Sci., 2019, 10, 9038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yanai T., Tew D. P., Handy N. C., Chem. Phys. Lett., 2004, 393, 51

    Article  CAS  Google Scholar 

  78. Yang C.-C., Zheng X.-L., Tian W. Q., Li W.-Q, Yang L., Phys. Chem. Chem. Phys., 2021, DOI: https://doi.org/10.1039/D1CP00383F

  79. Frattarelli D., Schiavo M., Facchetti A., Ratner M. A., Marks T. J., J. Am. Chem. Soc., 2009, 131, 12595

    Article  CAS  PubMed  Google Scholar 

  80. Gieseking R. L., Mukhopadhyay S., Risko C., Brédas J.-L., ACS Photonics, 2014, 1, 261

    Article  CAS  Google Scholar 

  81. **ao D. Q., Bulat F. A., Yang W. T., Beratan D. N., Nano Lett., 2008, 8, 2814

    Article  CAS  PubMed  Google Scholar 

  82. Yamaguchi Y., Ogawa K., Nakayama K. I., Ohba Y., Katagiri H., J. Am. Chem. Soc., 2013, 135, 19095

    Article  CAS  PubMed  Google Scholar 

  83. Ohtsu K., Hayami R., Sagawa T., Tsukada S., Yamamoto K., Gunji T., Tetrahedron, 2019, 75, 130658

    Article  CAS  Google Scholar 

  84. Jacquemin D., Champagne B., André J. M., Chem. Phys., 1995, 197, 107

    Article  CAS  Google Scholar 

  85. Lepetit L., Joffre M., Opt. Lett., 1996, 21, 564

    Article  CAS  PubMed  Google Scholar 

  86. Lepetie L., Chériaux G., Joffre M., J. Nonlinear Opt. Phys. Mater., 2012, 5, 465

    Article  Google Scholar 

  87. Chen J., Wang M. Q., Zhou X., Yang L., Li W. Q., Tian W. Q., Phys. Chem. Chem. Phys., 2017, 19, 29315

    Article  CAS  PubMed  Google Scholar 

  88. Cockayne E., Rutter G. M., Guisinger N. P., Crain J. N., First P. N., Stroscio J. A., Phys. Rev. B: Condens. Matter Mater. Phys., 2011, 83, 195425

    Article  CAS  Google Scholar 

  89. Hou I. C. Y., Sun Q., Eimre K., Giovannantonio M. D., Urgel J., Ruffieux P., Narita A., Fasel R., Müllen K., J. Am. Chem. Soc., 2020, 142, 10291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos.21673025, 11974091, 21203042, 11574062), the Open Projects of Key Laboratory of Polyoxometalate Science of Ministry of Education(NENU) of China and the State Key Laboratory of Supramolecular Structure and Materials(JLU) of China(No. SKLSSM2021020).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Quan Tian, Weiqi Li or Ling Yang.

Ethics declarations

The authors declare no conflicts of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, K., Zheng, X., Yang, C. et al. Theoretical Studies on the Electronic Structure of Nano-graphenes for Applications in Nonlinear Optics. Chem. Res. Chin. Univ. 38, 579–587 (2022). https://doi.org/10.1007/s40242-021-1090-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-021-1090-x

Keywords

Navigation