Log in

Recrystallization Behavior of the New Ni–Co-Based Superalloy with Fusion Structure Produced by Electron Beam Smelting Layered Solidification Technology

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

The new Ni–Co-based superalloy featuring a "fusion structure" was produced utilizing electron beam smelting layered solidification technology (EBSL). Experimental examination of hot compression deformation with varied settings for EBSL and conventional duplex process melting Ni–Co superalloys was performed. As per the study, EBSL-Ni–Co superalloys exhibited enhanced recrystallization susceptibility during hot deformation. Furthermore, elevating deformation temperature, lowering strain rate, and augmenting strain collectively contribute to enlarging the volume fraction of dynamically recrystallized grains. Aberrant growth of grains occurred when the deformation temperature equaled γ′ sub-solvus temperature and the strain rate was slower. Moreover, exceeding the γ′ solvus temperature during deformation significantly increases the particle size of dynamic recrystallization (DRX) grains. The γ′ phase can effectively modulate the DRX grain size through the pegging effect. Additionally, it was revealed that the presence of the fusion structure aids in the generation of continuous dynamic recrystallization, discontinuous dynamic recrystallization, and twinning-induced dynamic recrystallization while the alloy undergoes hot deformation. This mechanism promotes DRX granule formation and permits complete recrystallization. Ultimately, the fusion structure was identified as playing a catalytic role in the dynamic recrystallization process of the new Ni–Co superalloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. C.Y. Cui, Y.F. Gu, H. Harada, D.H. **, A. Sato, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 37, 3183 (2006)

    Article  Google Scholar 

  2. E.X. Pu, W.J. Zheng, Z.G. Song, H. Feng, H. Dong, Acta Metall. Sin. -Engl Lett. 30, 1119 (2017)

    Article  CAS  Google Scholar 

  3. H. Cui, Y. Tan, R. Bai, Y. Li, X. Zhuang, Z. Chen, X. You, P. Li, C. Cui, Mater. Charact. 184, 111668 (2022)

    Article  CAS  Google Scholar 

  4. H. Cui, Y. Tan, R. Bai, L. Ning, X. You, C. Cui, P. Li, J. Alloys Compd. 934, 167880 (2023)

    Article  CAS  Google Scholar 

  5. X. You, Y. Tan, M. Takeyama, P. Li, Y. Li, H. Zhang, H. Cui, C. Cui, Y. Wang, J. Li, Z. Zhang, G. Dong, W. **ao, J. Mater. Sci. Technol. 143, 216 (2023)

    Article  CAS  Google Scholar 

  6. F. Liu, J. Chen, J. Dong, M. Zhang, Z. Yao, Mater. Sci. Eng. A 651, 102 (2016)

    Article  CAS  Google Scholar 

  7. Y.T. Wang, J.B. Li, Y.C. **n, X.H. Chen, M. Rashad, B. Liu, Y. Liu, Acta Metall. Sin. -Engl. Lett. 32, 932 (2019)

    Article  CAS  Google Scholar 

  8. G. Zhao, X. Zang, Y. **g, N. Lü, J. Wu, Mater. Sci. Eng. A 815, 141293 (2021)

    Article  CAS  Google Scholar 

  9. M. Higashi, N. Kanno, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 52, 181 (2021)

    Article  CAS  Google Scholar 

  10. Z. Zhou, R. Zhang, C. Cui, Y. Zhou, X. Sun, Mater. Sci. Eng. A 833, 142370 (2022)

    Article  CAS  Google Scholar 

  11. L. Zhao, Y. Tan, S. Shi, X. You, P. Li, C. Cui, J. Alloys Compd. 833, 155019 (2020)

    Article  CAS  Google Scholar 

  12. S. Dourandish, M. Jahazi, G.R. Ebrahimi, L. Ebacher, J. Mater. Res. Technol. 13, 260 (2021)

    Article  CAS  Google Scholar 

  13. L. Zhang, W. Wang, M. Babar Shahzad, Y.Y. Shan, K. Yang, Acta Metall. Sin. -Engl. Lett. 32, 1161 (2019)

    Article  CAS  Google Scholar 

  14. Y. Zhu, Y. Cao, R. Luo, C. Liu, H. Di, G. Shu, G. Huang, Q. Liu, Acta Metall. Sin. -Engl. Lett. 34, 1296 (2021)

    Article  CAS  Google Scholar 

  15. Y.P. Li, R.B. Song, E.D. Wen, F.Q. Yang, Acta Metall. Sin. -Engl. Lett. 29, 441 (2016)

    Article  CAS  Google Scholar 

  16. W.H. Qi, B.Y. Huang, M.P. Wang, Z. Li, Z.M. Yu, Phys. Lett. Sect. A Gen. At. Solid State Phys. 370, 494 (2007)

    CAS  Google Scholar 

  17. B. Aashranth, M. Arvinth Davinci, D. Samantaray, U. Borah, S.K. Albert, Mater. Des. 116, 495 (2017)

    Article  CAS  Google Scholar 

  18. D.G. Cram, H.S. Zurob, Y.J.M. Brechet, C.R. Hutchinson, Acta Mater. 57, 5218 (2009)

    Article  CAS  Google Scholar 

  19. J. Hidalgo, M.J. Santofimia, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 47, 5288 (2016)

    Article  CAS  Google Scholar 

  20. O. Beltran, K. Huang, R.E. Logé, Comput. Mater. Sci. 102, 293 (2015)

    Article  CAS  Google Scholar 

  21. Y. Wu, Q. Hu, Z. Ding, J. Li, Acta Metall. Sin. -Engl. Lett. 36, 803 (2023)

    Article  CAS  Google Scholar 

  22. C. Liu, J. Zhang, Y. Yang, X. **a, T. He, J. Ding, Y. Tang, Z. Zhang, X. Chen, Y. Liu, Acta Metall. Sin. -Engl. Lett. 35, 1383 (2022)

    Article  Google Scholar 

  23. J. Humphreys, G.S. Rohrer, A. Rollett, The Structure and Energy of Grain Boundaries (Elsevier, Amsterdam, 2017)

    Book  Google Scholar 

  24. S. Huang, L. Wang, X. Lian, B. Zhang, G. Zhao, Acta Metall. Sin. -Engl. Lett. 27, 198 (2014)

    Article  CAS  Google Scholar 

  25. J. Xun, G. Lin, H. Liu, S. Zhao, J. Chen, X. Dai, R. Zhang, Acta Metall. Sin. -Engl. Lett. 33, 215 (2020)

    Article  CAS  Google Scholar 

  26. A. Harte, M. Atkinson, A. Smith, C. Drouven, S. Zaefferer, J. Quinta da Fonseca, M. Preuss, Acta Mater. 194, 257 (2020)

    Article  CAS  Google Scholar 

  27. F.J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena (Elsevier, Amsterdam, 2012).

  28. T.R. Afanasyev, Recrystallization in Metals and Alloys (1981).

  29. X. Tang, B. Wang, H. Ji, X. Fu, W. **ao, Mater. Sci. Eng. A 675, 192 (2016)

    Article  CAS  Google Scholar 

  30. P. Liu, R. Zhang, Y. Yuan, C. Cui, F. Liang, X. Liu, Y. Gu, Y. Zhou, X. Sun, J. Mater. Sci. Technol. 77, 66 (2021)

    Article  CAS  Google Scholar 

  31. M. Soucail, M. Marty, H. Octor, Superalloys (1996).

  32. J.W. Martin, Encyclopedia of Materials: Science and Technology (Elsevier, Amsterdam, 2001), p.3634

    Book  Google Scholar 

  33. D. Zöllner, Ref. Modul. Mater. Sci. Mater. Eng. 30, 025010 (2016)

    Google Scholar 

  34. V. Yadav, N. Moelans, Y. Zhang, D. Juul Jensen, Acta Mater. 221, 117377 (2021)

    Article  CAS  Google Scholar 

  35. T. Sakai, Y. Nagao, M. Ohashi, J.J. Jonas, Mater. Sci. Technol. (United Kingdom) 2, 659 (1986)

    Article  CAS  Google Scholar 

  36. T. Sakai, M. Ohashi, Mater. Sci. Technol. (United Kingdom) 6, 1251 (1990)

    Article  CAS  Google Scholar 

  37. J. Humphreys, G.S. Rohrer, A. Rollett, Mobility and Migration of Boundaries (Elsevier, Amsterdam, 2017)

    Book  Google Scholar 

  38. B. **e, H. Yu, T. Sheng, Y. **ong, Y. Ning, M.W. Fu, J. Alloys Compd. 803, 16 (2019)

    Article  CAS  Google Scholar 

  39. S. Wang, L. Wang, Y. Liu, G. Xu, B. Zhang, G. Zhao, Acta Metall. Sin. -Engl. Lett. 24, 295 (2011)

    CAS  Google Scholar 

  40. H.H. Lu, Y. Li, L. Lu, W.G. Zhang, W. Liang, Acta Metall. Sin. Engl. Lett. 35, 1983 (2022)

    Article  CAS  Google Scholar 

  41. V. Randle, Acta Mater. 52, 4067 (2004)

    Article  CAS  Google Scholar 

  42. H. Zhang, K. Zhang, H. Zhou, Z. Lu, C. Zhao, X. Yang, Mater. Des. 80, 51 (2015)

    Article  CAS  Google Scholar 

  43. L. Sun, Z. Xu, L. Peng, X. Lai, Scr. Mater. 219, 114877 (2022)

    Article  CAS  Google Scholar 

  44. J. Humphreys, G.S. Rohrer, A. Rollett, Recrystallization and Related Annealing Phenomena (Elsevier, Amsterdam, 2017), p.305

    Book  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the National Key Research and Development Program of China (Grant No. 2019YFA0705300), the National Natural Science Foundation of China (Grant No. 52004051), the Innovation Team Project for Key Fields of Dalian (Grant No. 2019RT13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengting Li.

Ethics declarations

Conflict of interest

The authors state that there are no conflicts of interest to disclose.

Additional information

Available online at http://springer.longhoe.net/journal/40195

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, H., Tan, Y., Bai, R. et al. Recrystallization Behavior of the New Ni–Co-Based Superalloy with Fusion Structure Produced by Electron Beam Smelting Layered Solidification Technology. Acta Metall. Sin. (Engl. Lett.) 36, 2013–2030 (2023). https://doi.org/10.1007/s40195-023-01608-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-023-01608-6

Keywords

Navigation