Log in

Microstructure Evolution of Primary γ′ Phase in Ni3Al-Based Superalloy

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

In this work, water cooling, air cooling (AC) and furnace cooling (FC) were applied to investigate the effect of cooling rate on microstructure evolution of primary γ′ in a newly designed Ni3Al-based alloy. The results showed that nucleation rate of primary γ′ increased with increasing cooling rate. In addition, higher cooling rate shortened growth period of primary γ′, which made its morphology close to the initial precipitated γ′. For AC and FC specimens, due to the lower cooling rate, primary γ′ possessed longer growth period and its morphology was mainly due to the evolution of lattice misfit between γ and primary γ′. Meanwhile, growth of primary γ′ depended on lattice misfit distribution between its corner and edge area. Moreover, primary γ′ morphologies of sphere, cube and concave cube with tip corners were illustrated by considering interaction between elemental diffusion and elastic strain energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. C. Walter, B. Hallstedt, N. Warnken, Mater. Sci. Eng. A 397, 385 (2005)

    Google Scholar 

  2. X. Su, Q. Xu, R. Wang, Z. Xu, S. Liu, B. Liu, Mater. Des. 141, 296 (2018)

    CAS  Google Scholar 

  3. H. Long, Y. Liu, D. Kong, H. Wei, Y. Chen, S. Mao, J. Alloys Compd. 724, 287 (2017)

    CAS  Google Scholar 

  4. O.A. Ojo, R.G. Ding, M.C. Chaturvedi, Intermetallics 16, 188 (2008)

    CAS  Google Scholar 

  5. J. Ding, S. Jiang, Y. Li, Y. Wu, J. Wu, Y. Peng, X. He, X. **a, C. Li, Y. Liu, Intermetallics 98, 28 (2018)

    CAS  Google Scholar 

  6. C. Ai, J. Zhou, S. Li, H. Zhang, Y. Pei, S. Gong, J. Alloys Compd. 660, 159 (2016)

    CAS  Google Scholar 

  7. M.N. Samani, A. Shokuhfar, A.R. Kamali, M. Hadi, J. Alloys Compd. 500, 30 (2010)

    Google Scholar 

  8. P. Jozwik, W. Polkowski, Z. Bojar, Materials (Basel) 8, 2537 (2015)

    CAS  Google Scholar 

  9. J. Gayda, T.P. Gabb, P.T. Kantzos, in Proceedings of the Superalloy 2004, ed. by K.A. Green, et al. (Champion, 2004), p. 323

  10. R.J. Mitchell, M. Hardy, M. Preuss, S. Tin, in Proceedings of the Superalloy 2004, ed. by K.A. Green, et al. (Champion, 2004), p. 361

  11. J. Lapin, Intermetallics 5, 615 (1997)

    CAS  Google Scholar 

  12. M. Krasnowski, A. Antolak, T. Kulik, J. Alloys Compd. 434–435, 344 (2007)

    Google Scholar 

  13. D.A. Porter, K.E. Easterling (eds.), Phase Transformations in Metals and Alloys (Chapman Hall, London, 1992)

    Google Scholar 

  14. A.G. Khachaturyan, S.V. Semenovskaya, J.W. Morris, Acta Metall. 36, 1563 (1988)

    CAS  Google Scholar 

  15. Y. Chen, R. Prasath, T.J.A. Slater, M. Bai, R. Mitchell, O. Ciuca, M. Preuss, S.J. Haigh, Acta Mater. 110, 295 (2016)

    CAS  Google Scholar 

  16. L. Luo, Y. Ma, S. Li, Y. Pei, L. Qin, S. Gong, Intermetallics 99, 18 (2018)

    CAS  Google Scholar 

  17. F.L.R. Tirado, J.P. Toinin, D.C. Dunand, Acta Mater. 151, 137 (2018)

    Google Scholar 

  18. P.M. Sarosi, B. Wang, J.P. Simmons, Y. Wang, M.J. Mills, Scr. Mater. 57, 767 (2007)

    CAS  Google Scholar 

  19. Y. Wu, Y. Liu, C. Li, X. **a, J. Wu, H. Li, J. Alloys Compd. 771, 526 (2019)

    CAS  Google Scholar 

  20. J. Ding, S. Jiang, Y. Wu, Y. Li, X. **a, C. Li, Y. Liu, Mater. Lett. 211, 5 (2018)

    CAS  Google Scholar 

  21. X. **a, Y. Peng, J. Zhang, X. He, S. Yin, J. Ding, C. Long, X. Chen, C. Liu, J. Mater. Sci. 54, 13368 (2019)

    CAS  Google Scholar 

  22. J. Wu, Y. Liu, C. Li, Y. Wu, X. **a, H. Li, Acta Metall. Sin. Engl. Lett. 56, 21 (2020)

    Google Scholar 

  23. K. Yoshida, Y. Sano, Y. Tomii, Supercond. Sci. Technol. 8, 329 (1995)

    CAS  Google Scholar 

  24. J. Wu, C. Li, Y. Liu, X. **a, Y. Wu, Z. Ma, H. Wang, Intermetallics 109, 48 (2019)

    CAS  Google Scholar 

  25. R. Radis, M. Schaffer, M. Albu, G. Kothleitner, P. Pölt, E. Kozeschnik, Acta Mater. 57, 5739 (2009)

    CAS  Google Scholar 

  26. B. Saleem, H.B. Dong, V. Patel, Mater. Sci. Eng. A 748, 327 (2019)

    CAS  Google Scholar 

  27. R.A. Ricks, A.J. Porter, R.C. Ecob, Acta Metall. 31, 43 (1983)

    CAS  Google Scholar 

  28. J.S. Van Sluytman, Acta Mater. 60, 1771 (2012)

    Google Scholar 

  29. R. Eriş, M.V. Akdeniz, A.O. Mekhrabov, Intermetallics 109, 37 (2019)

    Google Scholar 

  30. T. Grosdidier, A. Hazotte, A. Simon, Mater. Sci. Eng. A 256, 183 (1998)

    Google Scholar 

  31. N.D. Souza, M. Lekstrom, H.B. Dong, Mater. Sci. Eng. A 490, 258 (2008)

    Google Scholar 

  32. O.A. Ojo, M.C. Chaturvedi, Mater. Sci. Eng. A 403, 77 (2005)

    Google Scholar 

  33. M. Doi, Mater. Sci. 33, 637 (1992)

    CAS  Google Scholar 

  34. P. Pandey, A.K. Sawant, B. Nithin, Z. Peng, S.K. Makineni, B. Gault, K. Chattopadhyay, Acta Mater. 168, 37 (2019)

    CAS  Google Scholar 

  35. M. Gell, D.N. Duhl, in Proceedings of the Nicholas Journal Grant Symposium on Advanced High-Temperature Alloys: Processing and Properties, ed. by S.M. Allen, R.M. Pelloux, R. Widmer (ASM International, OH, 1986), p. 9

  36. Y. Wu, Y. Liu, C. Li, X. **a, J. Wu, H. Li, Intermetallics 113, 1 (2019)

    Google Scholar 

  37. T.M. Pollock, A.S. Argon, Acta Metall. Mater. 42, 1859 (1994)

    CAS  Google Scholar 

  38. M.V. Rybin, K.B. Samusev, M.F. Limonov, Photonics Nanostruct. Fundam. Appl. 5, 119 (2007)

    Google Scholar 

  39. W. Liu, N. Yan, H.P. Wang, Sci. China Technol. Sci. 62, 1976 (2019)

    CAS  Google Scholar 

  40. H.P. Wang, P. Lü, X. Cai, B. Zhai, J.F. Zhao, B. Wei, Mater. Sci. Eng. A 772, 1 (2020)

    Google Scholar 

  41. Y.F. Li, C. Li, J. Wu, H.J. Li, Y.C. Liu, H.P. Wang, Acta Metall. Sin. Engl. Lett. 32, 764 (2019)

    CAS  Google Scholar 

  42. R. O′Hayre (ed.), Materials Kinetics Fundamentals (Principles, Processes and Applications) (Wiley, Hoboken, 2015)

    Google Scholar 

  43. J.P. Simmons, C. Shen, Y. Wang, Scr. Mater. 43, 935 (2000)

    CAS  Google Scholar 

  44. J.W. Christian (ed.), The Theory of Transformations in Metals and Alloys (Elsevier, Oxford, 2002)

    Google Scholar 

  45. D. Johnson, Intermetallics 3, 99 (1995)

    CAS  Google Scholar 

  46. J. Wu, Y.L. Chong, C.X. **a, Y. Wu, H. Li, Acta Metall. Sin. Engl. Lett. 30, 949 (2017)

    CAS  Google Scholar 

  47. W.C. Winegard (ed.), An Introduction to the Solidification of Metals (Institute of Metals, London, 1964)

    Google Scholar 

  48. M. Tomellini, J. Mater. Sci. 48, 5653 (2013)

    CAS  Google Scholar 

  49. M.M.P. Janssen, Mater. Sci. 4, 1623 (1973)

    CAS  Google Scholar 

  50. C.Z. Hargather, S.L. Shang, Z.K. Liu, Acta Mater. 157, 126 (2018)

    CAS  Google Scholar 

  51. Y.Z. Wang, Dissertation (The State University of New Jersey, 1995)

  52. R.E. Smallman (ed.), Modern Physical Metallurgy, 8th edn. (2014)

  53. C.E. Campbell, Acta Mater. 56, 4277 (2008)

    CAS  Google Scholar 

  54. R.J. Mitchell, M. Preuss, M.C. Hardy, S. Tin, Mater. Sci. Eng. A 423, 282 (2006)

    Google Scholar 

  55. R.J. Mitchell, M. Preuss, Metall. Mater. Trans. A 38, 615 (2007)

    Google Scholar 

  56. R.J. Mitchell, M. Preuss, S. Tin, M.C. Hardy, Mater. Sci. Eng. A 473, 158 (2008)

    Google Scholar 

  57. G. Brunetti, A. Setterrati, A. Hazotte, S. Denis, J.J. Fundenberger, A. Tidu, E. Bouzy, Micron 43, 396 (2012)

    Google Scholar 

  58. L. Müller, T. Link, M. Feller-Kniepmeier, Scr. Metall. Mater. 26, 1297 (1992)

    Google Scholar 

  59. F. Pyczak, B. Devrient, H. Mughrabi, in Proceedings of the Superalloy 2004, ed. by K.A. Green, et al. (Champion, 2004), p. 827

  60. F.X. Kayser, C. Stassis, Phys. Stat. Sol. (A), 64, 335 (1981)

    Google Scholar 

  61. M.V. Nathal, R.A. MacKay, R.G. Garlick, Mater. Sci. Eng. 75, 195 (1985)

    CAS  Google Scholar 

  62. B. Von Grossmann, H. Biermann, U. Tetzlaff, F. Pyczak, H. Mughrabi, Scr. Mater. 43, 859 (2000)

    Google Scholar 

  63. H. Biermann, B. Von Grossmann, T. Unga, Acta Mater. 48, 2221 (2000)

    CAS  Google Scholar 

  64. H. Mughrabi, Mater. Sci. Technol. 25, 191 (2009)

    CAS  Google Scholar 

  65. Y. Wang, L. Chen, A.G. Khachaturyan, Scr. Metall. 25, 1969 (1991)

    CAS  Google Scholar 

  66. A.G. Khachaturyan (ed.), Theory of Structural Transformations in Solids (Wiley, New York, 1983)

    Google Scholar 

  67. E. Nembach, G. Neite, Prog. Mater Sci. 29, 177 (1985)

    CAS  Google Scholar 

  68. X. **a, Q. Zhao, Y. Peng, P. Zhang, L. Liu, J. Ding, X. Lu, L. Wang, L. Huang, H. Zhang, X. Chen, J. Alloys Compd. 15, 3370 (2020)

    Google Scholar 

  69. M. Doi, Prog. Mater Sci. 40, 79 (1996)

    CAS  Google Scholar 

  70. R.R. Unocic, L. KovarikL, C. Shen, P.M. Sarosi, Y. Wang, J. Li, S. Ghosh, M.J. Mills, in Superalloys 08, ed. by R.C. Reed, K.A. Green, P. Caron, T.P. Gabb, M.G. Fahrmann, E.S. Huron, S.A. Woodard (TMS, Warrendale, PA, 2008), p. 377

  71. K. Vasu, M.G. Krishna, K.A. Padmanabhan, J. Mater. Res. 28, 1711 (2014)

    Google Scholar 

  72. X. Li, X.N. Zhang, C.P. Liu, C.Y. Wang, T. Yu, Z. Zhang, J. Alloys Compd. 633, 366 (2015)

    CAS  Google Scholar 

  73. X.G. Wang, J.L. Liu, T. **, X.F. Sun, J. Mater. 63, 286 (2014)

    Google Scholar 

  74. Q.Z. Gao, Y.J. Jiang, Z.Y. Liu, H.L. Zhang, C.C. Jiang, X. Zhang, H.J. Li, Metall. Mater. Trans. A 779, 139 (2020)

    Google Scholar 

  75. A.M. Manzoni, S. Haas, J.M. Yu, H.M. Daoud, U. Glatzel, H. Aboulfadl, F. Mücklich, R. Duran, G. Schmitz, D.M. Többens, S. Matsumura, F. Vogel, N. Wanderka, H. Berlin, E. Gmbh, D. Berlin, Mater. Charact. 154, 363 (2019)

    CAS  Google Scholar 

  76. K.E. Yoon, R.D. Noebe, D.N. Seidman, Acta Mater. 55, 1159 (2007)

    CAS  Google Scholar 

  77. N.A. Protasova, I.L. Svetlov, M.B. Bronfin, N.V. Petrushin, Phys. Met. Metallogr. 106, 495 (2008)

    Google Scholar 

  78. H. Numakura, N. Kurita, M. Koiwa, P. Gadaud, Philos. Mag. A 79, 943 (1999)

    CAS  Google Scholar 

  79. R. Moskovic, Precipitation of Ni3Al in a nickel rich NiAl. J. Mater. Sci. 12, 1895 (1977)

    CAS  Google Scholar 

  80. X. Zhou, T.F. Ma, Y.L. Li, L. Li, K.X. Wang, Y.S. Zhang, Y.J. Lai, P.X. Zhang, Mater. Sci. Eng. A 761, 1380461 (2019)

    Google Scholar 

  81. Y.Y. Qiu, J. Alloys Compd. 270, 145 (1998)

    CAS  Google Scholar 

  82. G. Britain, P. Press, I. Erlangen-niirnberg, G. Physics, B. Hich, U. Srr, Acta Metall. Mater. 39, 2783 (1991)

    Google Scholar 

  83. L. Liu, Z. Chen, Y. Wang, J. Alloys Compd. 661, 349 (2016)

    CAS  Google Scholar 

  84. H. Long, H. Wei, Y. Liu, S. Mao, J. Zhang, S. **ang, Y. Chen, W. Gui, Q. Li, Z. Zhang, X. Han, Acta Mater. 120, 95 (2016)

    CAS  Google Scholar 

  85. C. Stöcker, M. Zimmermann, H.J. Christ, Int. J. Fatigue 33, 2 (2011)

    Google Scholar 

  86. M. Hantcherli, F. Pettinari-Sturmel, B. Viguier, J. Douin, A. Coujou, Scr. Mater. 66, 143 (2012)

    CAS  Google Scholar 

  87. J.X. Zhang, T. Murakumo, Y. Koizumi, H. Harada, J. Mater. Sci. 38, 4883 (2003)

    CAS  Google Scholar 

  88. Z.W. Huang, H.Y. Li, M. Preuss, M. Karadge, P. Bowen, S. Bray, G. Baxter, Metall. Mater. Trans. A 38, 1608 (2007)

    Google Scholar 

  89. C. Maldonado, T.H. North, J. Mater. Sci. 37, 2087 (2002)

    CAS  Google Scholar 

  90. C. Mary, M. Jahazi, Adv. Mater. Res. 15–17, 357 (2007)

    Google Scholar 

  91. M. Preuss, P.J. Withers, W.L.J. Pang, G.J. Baxter, Metall. Mater. Trans. A 33, 3215 (2002)

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of Hebei Province (No. E2019202161), the High-level Talent Funding Project of Hebei Province (No. A201902008), the Key R&D Program of Hebei Province (No. 19251013D), the College Student Innovation and Entrepreneurship Training Program of Hebei University of Technology (No. S201910080035) and the National Key R&D Program of China (No. 2018YFB2001805).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Ding, **ngchuan **a or Yongchang Liu.

Additional information

Available online at http://springer.longhoe.net/journal/40195.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., Zhang, J., Peng, Y. et al. Microstructure Evolution of Primary γ′ Phase in Ni3Al-Based Superalloy. Acta Metall. Sin. (Engl. Lett.) 33, 1709–1726 (2020). https://doi.org/10.1007/s40195-020-01105-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-020-01105-0

Keywords

Navigation