Log in

Effect of Electric Potentials on Microstructure, Corrosion and Wear Characteristic of the Nitrided Layer Prepared on 2Cr13 Stainless Steel by Plasma Nitriding

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

Plasma nitriding is a widely used technology to enhance the surface performance and extend the service life of alloy parts. The current research mainly focuses on the influences of time, temperature, gas type and pressure parameters on nitriding behavior, while fewer studies have been conducted on the electric potential. This paper mainly reports the effect of the electric potential on nitriding behavior. Test conditions were set using cathodic, anodic and floating potentials in a plasma nitriding furnace. 2Cr13 stainless steel was nitrided at 450 °C for 5 h in an NH3 atmosphere. The experimental results show that the nitriding treatment can be well performed under the different electric potentials, but differences exist in microstructures, morphologies and performance results of the modified layers. The thickness and hardness values of the nitrided layer are ranked as follows: cathodic > anodic > floating potential. The anodic nitrided surface has an obvious particle deposition layer composed of nitrides and oxides. Electrochemical and tribological experiments show that the corrosion resistance and wear resistance were significantly improved after a nitriding treatment using the three electric potentials. Moreover, the floating nitriding treatment resulted in the best tribological performance and corrosion resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Y.X. Wang, Z.B. Chen, C.S. Zhang, Y. You, Acta Metall. Sin. (Engl. Lett.) 31, 371 (2018)

    Article  Google Scholar 

  2. A. Zhecheva, W. Sha, S. Malinov, A. Long, Surf. Coat. Technol. 200, 2192 (2005)

    Article  Google Scholar 

  3. Y. Sun, Wear 362, 105 (2016)

    Article  Google Scholar 

  4. B.C.E.S. Kurelo, G.B. de Souza, S.L.R. da Silva, F.C. Serbena, C.E. Foerster, C. Alves, Appl. Surf. Sci. 349, 403 (2015)

    Article  Google Scholar 

  5. L.A. Espitia, H. Dong, X.Y. Li, C.E. Pinedo, A.P. Tschiptschin, Wear 376–377, 30 (2017)

    Article  Google Scholar 

  6. Y.T. **, D.X. Liu, D. Han, Surf. Coat. Technol. 202, 2577 (2008)

    Article  Google Scholar 

  7. W.Y. Tang, M.H. Chuang, S.J. Lin, J.W. Yeh, Metall. Mater. Trans. A 43, 2390 (2012)

    Article  Google Scholar 

  8. D.X.L.Y.T. **, D. Han, Z.F. Han, Acta Metall. Sin. (Engl. Lett.) 21, 21 (2008)

    Article  Google Scholar 

  9. Q. Wang, C. Huang, L. Zhang, J. Mater. Sci. Technol. 28, 60 (2012)

    Article  Google Scholar 

  10. J.C. Díaz-Guillén, G. Vargas-Gutiérrez, E.E. Granda-Gutiérrez, J.S. Zamarripa-Piña, S.I. Pérez-Aguilar, J. Candelas-Ramírez, L. Álvarez-Contreras, J. Mater. Sci. Technol. 29, 287 (2013)

    Article  Google Scholar 

  11. F. Zhang, M. Yan, J. Mater. Sci. Technol. 30, 1278 (2014)

    Article  Google Scholar 

  12. M. Olzon-Dionysio, M. Campos, M. Kapp, S. de Souza, S.D. de Souza, Surf. Coat. Technol. 204, 3623 (2010)

    Article  Google Scholar 

  13. C.E. Pinedo, S.I.V. Larrotta, A.S. Nishikawa, H. Dong, X.Y. Li, R. Magnabosco, A.P. Tschiptschin, Surf. Coat. Technol. 308, 189 (2016)

    Article  Google Scholar 

  14. C.X. Li, J. Georges, X.Y. Li, Surf. Eng. 18, 453 (2002)

    Article  Google Scholar 

  15. M. Naeem, M. Shafiq, M. Zaka-ul-Islam, A. Ashiq, J.C. Díaz-Guillén, M. Shahzad, M. Zakaullah, Mater. Des. 108, 745 (2016)

    Article  Google Scholar 

  16. Y. Hoshiyama, R. Mizobata, H. Miyake, Surf. Coat. Technol. 307, 1041 (2016)

    Article  Google Scholar 

  17. P. Hubbard, J.G. Partridge, E.D. Doyle, D.G. McCulloch, M.B. Taylor, S.J. Dowey, Surf. Coat. Technol. 204, 1145 (2010)

    Article  Google Scholar 

  18. M. Naeem, M. Shafiq, M. Zaka-ul-Islam, M.I. Bashir, J.C. Díaz-Guillén, C.M. Lopez-Badillo, M. Zakaullah, J. Alloys Compd. 721, 307 (2017)

    Article  Google Scholar 

  19. M.I. Bashir, M. Shafiq, M. Naeem, M. Zaka-ul-Islam, J.C. Díaz-Guillén, C.M. Lopez-Badillo, M. Zakaullah, Surf. Coat. Technol. 327, 59 (2017)

    Article  Google Scholar 

  20. Y. Li, Z. Wang, L. Wang, Appl. Surf. Sci. 298, 243 (2014)

    Article  Google Scholar 

  21. H. Dong, Int. Mater. Rev. 55, 65 (2010)

    Article  Google Scholar 

  22. C.X. Li, T. Bell, Corros. Sci. 48, 2036 (2006)

    Article  Google Scholar 

  23. A. Fossati, F. Borgioli, E. Galvanetto, T. Bacci, Surf. Coat. Technol. 200, 3511 (2006)

    Article  Google Scholar 

  24. F. Borgioli, A. Fossati, E. Galvanetto, T. Bacci, Surf. Coat. Technol. 200, 2474 (2005)

    Article  Google Scholar 

  25. F. Borgioli, A. Fossati, E. Galvanetto, T. Bacci, G. Pradelli, Surf. Coat. Technol. 200, 5505 (2006)

    Article  Google Scholar 

  26. B.C.E.S. Kurelo, G.B. de Souza, S.L. Rutz da Silva, N.d.F. Daudt, C. Alves Jr., R.D. Torres, F.C. Serbena, Surf. Coat. Technol. 275, 41 (2015)

    Article  Google Scholar 

  27. H. Forati Rad, A. Amadeh, H. Moradi, Mater. Des. 32, 2635 (2011)

    Article  Google Scholar 

  28. F. Borgioli, E. Galvanetto, T. Bacci, G. Pradelli, Surf. Coat. Technol. 149, 192 (2002)

    Article  Google Scholar 

  29. H. Martínez, F.B. Yousif, Eur. Phys. J. D 46, 493 (2008)

    Article  Google Scholar 

  30. K. Rusnak, J. Vicek, J. Phys. D Appl. Phys. 26, 585 (1993)

    Article  Google Scholar 

  31. J. Walkowicz, Surf. Coat. Technol. 174–175, 1211 (2003)

    Article  Google Scholar 

  32. H. Michel, T. Czerwiec, M. Gantois, D. Ablitzer, A. Ricard, Surf. Coat. Technol. 72, 103 (1995)

    Article  Google Scholar 

  33. A. Bogaerts, E. Neyts, R. Gijbels, J. van der Mullen, Spectrochim. Acta B 57, 609 (2002)

    Article  Google Scholar 

  34. R. de Sousa, F. de Araujo, K. Ribeiro, T. Dumelow, J. da Costa, C. Alves, Surf. Eng. 24, 52 (2008)

    Article  Google Scholar 

  35. C. Zhao, L.Y. Wang, L. Han, Surf. Eng. 24, 188 (2008)

    Article  Google Scholar 

  36. Y. Li, Y. He, S. Zhang, X. He, W. Wang, B. Hu, Vacuum 146, 1 (2017)

    Article  Google Scholar 

  37. Y. Li, Y. He, J. **u, W. Wang, Y. Zhu, B. Hu, Surf. Coat. Technol. 329, 184 (2017)

    Article  Google Scholar 

  38. Y.T. **, D.X. Liu, D. Han, Appl. Surf. Sci. 254, 5953 (2008)

    Article  Google Scholar 

  39. P. Corengia, G. Ybarra, C. Moina, A. Cabo, E. Broitman, Surf. Coat. Technol. 187, 63 (2004)

    Article  Google Scholar 

  40. Y. Li, Y. He, W. Wang, J. Mao, L. Zhang, Y. Zhu, Q. Ye, J. Mater. Sci. Eng. Perform. 27, 948 (2018)

    Article  Google Scholar 

  41. K.J.B. Ribeiro, R.R.M. de Sousa, F.O. de Araújo, R.A. de Brito, J.C.P. Barbosa, C. Alves Jr., Mater. Sci. Eng. A 479, 142 (2008)

    Article  Google Scholar 

  42. K. Nagatsuka, A. Nishimoto, K. Akamatsu, Surf. Coat. Technol. 205, S295 (2010)

    Article  Google Scholar 

  43. A. Nishimoto, A. Tokuda, K. Akamatsu, Mater. Trans. 50, 1169 (2009)

    Article  Google Scholar 

  44. T. Yamashita, P. Hayes, Appl. Surf. Sci. 254, 2441 (2008)

    Article  Google Scholar 

  45. F.Z. Bouanis, C. Jama, M. Traisnel, F. Bentiss, Corros. Sci. 52, 3180 (2010)

    Article  Google Scholar 

  46. L. Freire, M.J. Carmezim, M.G.S. Ferreira, M.F. Montemor, Electrochim. Acta 55, 6174 (2010)

    Article  Google Scholar 

  47. A. Lippitz, T. Hübert, Surf. Coat. Technol. 200, 250 (2005)

    Article  Google Scholar 

  48. D.J. Li, F. Liu, M.X. Wang, J.J. Zhang, Q.X. Liu, Thin Solid Films 506, 202 (2006)

    Article  Google Scholar 

  49. A. Conde, A.B. Cristóbal, G. Fuentes, T. Tate, J. de Damborenea, Surf. Coat. Technol. 201, 3588 (2006)

    Article  Google Scholar 

  50. F.Z. Bouanis, F. Bentiss, M. Traisnel, C. Jama, Electrochim. Acta 54, 2371–2378 (2009)

    Article  Google Scholar 

  51. J. Baranowska, S.E. Franklin, Wear 264, 899 (2008)

    Article  Google Scholar 

  52. M.F. Yan, R.L. Liu, Surf. Coat. Technol. 205, 345 (2010)

    Article  Google Scholar 

  53. J. Yang, Y. Liu, Z. Ye, D. Yang, S. He, X. Li, Appl. Surf. Sci. 256, 4072 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Key Basic Research Program of China (No. 2014CB046404), the Shandong Provincial Natural Science Foundation, China (No. ZR2018MEE016), the Shandong Provincial Key Research and Development Plan, China (No. 2017GGX20140) and the National Natural Science Foundation of China (No. 51301149).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong-Yong He or Zhong-Li Liu.

Additional information

Available online at http://springer.longhoe.net/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhang, SZ., Qiu, JX. et al. Effect of Electric Potentials on Microstructure, Corrosion and Wear Characteristic of the Nitrided Layer Prepared on 2Cr13 Stainless Steel by Plasma Nitriding. Acta Metall. Sin. (Engl. Lett.) 32, 733–745 (2019). https://doi.org/10.1007/s40195-018-0836-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-018-0836-z

Keywords

Navigation