Log in

Fabrication, Pore Structures and Mechanical Properties of (TiB2–Al2O3)/NiAl Porous Composites

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

Open-celled porous (TiB2–Al2O3)/NiAl composites were successfully fabricated by using spherical carbamide as space holders via self-propagating high-temperature synthesis (SHS). Effects of 10Al–3B2O3–3TiO2 contents (0–20 wt%) on the pore structures and the quasi-static compressive behaviors of the resultant materials were investigated. The porous (TiB2–Al2O3)/NiAl composites exhibit composite pore structure consisting of homogeneously distributed and interconnected millimeter pores and micropores. The millimeter pores virtually inherit the shape and size of carbamide particles, while the pore size of micropores increases with increasing the 10Al–3B2O3–3TiO2 content. Depending on the volume fraction of the carbamide, the porosity of the porous materials can be easily controlled in a range of 55%–85%. When the porosity is about 72%, the compressive strengths of porous NiAl and porous (TiB2–Al2O3)/NiAl composite with 15% 10Al–3B2O3–3TiO2 in green compact are 19 and 32 MPa, and the corresponding strains are 2.9% and 5.7%, respectively. Furthermore, the quasi-static compressive behavior of porous (TiB2–Al2O3)/NiAl composites can be estimated by Gibson–Ashby model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. N.S. Toloff, C.T. Liu, S.C. Deevi, Intermetallics 8, 1313 (2000)

    Article  Google Scholar 

  2. J.T. Guo, Ordered Intermetallic Compound NiAl Alloy (Science Press, Bei**g, 2003), pp. 1–13. (in Chinese)

    Google Scholar 

  3. X.L. Shi, M. Wang, W.Z. Zhai, Z.S. Xu, Q.X. Zhang, Y. Chen, Mater. Des. 45, 179 (2013)

    Article  Google Scholar 

  4. S.Y. Zhu, Q.L. Bi, M.Y. Niu, J. Yang, W.M. Liu, Wear 274–275, 423 (2012)

    Article  Google Scholar 

  5. N. Kanetake, M. Kobashi, Scr. Mater. 54, 521 (2006)

    Article  Google Scholar 

  6. H.X. Dong, Y. Jiang, Y.H. He, M. Song, J. Zou, N.P. Xu, B.Y. Huang, C.T. Liu, P.K. Liaw, J. Alloys Compd. 484, 907 (2009)

    Article  Google Scholar 

  7. H.X. Dong, Y.H. He, Y. Jiang, L. Wu, J. Zou, N.P. Xu, B.Y. Huang, C.T. Liu, Mater. Sci. Eng. A 528, 4849 (2011)

    Article  Google Scholar 

  8. M.X. Gao, Y. Pan, F.J. Oliveira, J.L. Baptista, J.M. Vieira, Mater. Lett. 58, 1761 (2004)

    Article  Google Scholar 

  9. Z.P. **ng, J.T. Guo, Z.Q. Hu, G.Y. An, Acta Metall. Sin. (Engl. Lett.) 7, 45 (1994)

    Google Scholar 

  10. N. Wei, H.Z. Cui, J. Wu, J. Wang, G.L. Wang, C. Jiang, Acta Metall. Sin. (Engl. Lett.) 28, 39 (2015)

    Article  Google Scholar 

  11. A. Michalski, J. Jaroszewicz, M. Rosiński, D. Siemiaszko, Intermetallics 14, 603 (2006)

    Article  Google Scholar 

  12. X. Zhu, T. Zhang, D. Marchant, V. Morris, J. Eur. Ceram. Soc. 30, 2781 (2010)

    Article  Google Scholar 

  13. E.M. Sharifi, F. Karimzadeh, M.H. Enayati, Adv. Powder Technol. 22, 526 (2011)

    Article  Google Scholar 

  14. X.J. Song, H.Z. Cui, L.L. Cao, P.Y. Gulyaev, Trans. Nonferrous Met. Soc. China 26, 1878 (2016)

    Article  Google Scholar 

  15. L. Wu, Y. Jiang, H.X. Dong, Y.H. He, N.P. Xu, J. Zou, B.Y. Huang, C.T. Liu, Intermetallics 19, 1759 (2011)

    Article  Google Scholar 

  16. L. Wu, Y.H. He, Y. Jiang, Y. Zeng, Y.F. **ao, B. Nan, Trans. Nonferrous Met. Soc. China 24, 3509 (2014)

    Article  Google Scholar 

  17. H. Attar, K.G. Prashanth, L.C. Zhang, M. Calin, I.V. Okulov, S. Scudino, C. Yang, J. Eckert, J. Mater. Sci. Technol. 31, 1001 (2015)

    Article  Google Scholar 

  18. A.A. Shokati, N. Parvin, M. Shokati, J. Alloys Compd. 585, 637 (2014)

    Article  Google Scholar 

  19. K. Morsi, T. Fujii, H. McShane, M. Mclean, Scr. Mater. 40, 359 (1999)

    Article  Google Scholar 

  20. E.M. Hunt, M.L. Pantoya, R.J. Jouet, Intermetallics 14, 620 (2006)

    Article  Google Scholar 

  21. Q.Z. Wang, W.J. Liu, D.M. Lu, C.X. Cui, Mater. Lett. 142, 52 (2015)

    Article  Google Scholar 

  22. G.L. Hao, H. Wang, X.Y. Li, Mater. Lett. 142, 11 (2015)

    Article  Google Scholar 

  23. J. Wu, H.Z. Cui, L.L. Cao, Z.Z. Gu, Trans. Nonferrous Met. Soc. China 21, 1750 (2011)

    Article  Google Scholar 

  24. E. Mostafavi, A. Ataie, J. Mater. Sci. Technol. 31, 798 (2015)

    Article  Google Scholar 

  25. Y. Jiang, Y.H. He, N.P. Xu, J. Zou, B.Y. Huang, C.T. Liu, Intermetallics 16, 327 (2008)

    Article  Google Scholar 

  26. X.M. Huang, T. **e, Analysis Methods of Materials (National Defense Industry Press, Bei**g, 2014), pp. 56–57. (in Chinese)

    Google Scholar 

  27. G.L. Hao, F.S. Han, W.D. Li, J. Porous Mater. 16, 251 (2009)

    Article  Google Scholar 

  28. H.Z. Cui, W. Liu, L.L. Cao, Q. Song, J. Tian, F.L. Teng, J. Wang, J. Eur. Ceram. Soc. 35, 3381 (2015)

    Article  Google Scholar 

  29. M. Kobashi, N. Kanetake, Adv. Eng. Mater. 4, 745 (2002)

    Article  Google Scholar 

  30. Q.Z. Wang, C.X. Cui, S.J. Liu, L.C. Zhao, Mater. Sci. Eng. A 527, 1275 (2011)

    Article  Google Scholar 

  31. L.L. Cao, H.Z. Cui, J. Wu, H.J. Tang, Trans. Nonferrous Met. Soc. China 22, 2790 (2012). (in Chinese)

    Google Scholar 

  32. G.L. Hao, Q.P. Xu, H. Wang, X.Y. Li, Mater. Sci. Technol. 32, 1592 (2016)

    Article  Google Scholar 

  33. Y. Yamada, T. Banno, Z.K. **e, Y.C. Li, C.E. Wen, Mater. Sci. Forum 539–543, 1833 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

The present work was financially supported by the Natural Science Foundation of Shandong Province (No. ZR2014EMM009) and the Public School Visiting Fund of Shandong University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Wu.

Additional information

Available online at http://springer.longhoe.net/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Yang, ZT., Cui, HZ. et al. Fabrication, Pore Structures and Mechanical Properties of (TiB2–Al2O3)/NiAl Porous Composites. Acta Metall. Sin. (Engl. Lett.) 30, 1145–1154 (2017). https://doi.org/10.1007/s40195-017-0650-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-017-0650-z

Keywords

Navigation