Log in

Controllable Synthesis of WO3 Nanowires by Electrospinning and Their Photocatalytic Properties Under Visible Light Irradiation

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

Large amounts of WO3 nanowires were prepared on silicon substrates by electrospinning followed by appropriate calcinations in air using ammonium metatungstate (AMT) as WO3 source. Tunable densities and diameters of WO3 nanowires were achieved by changing the electrospinning time and the concentration of AMT in precursor solution. TG/DSC analysis was used to direct the heating process. The effects of both solvent ratio and heating process on the morphology of the obtained nanowires were investigated. The morphology, structure, and chemical compositions of the tungsten oxide were characterized by SEM, XRD, and EDX, respectively. Results showed that monoclinic phase WO3 nanowires with diameters ranging from 100 to 200 nm were obtained after the appropriate heating process when the AMT concentration of the precursor solution increased from 10 to 20 wt%. The photocatalytic performance of the obtained WO3 nanowires under visible light irradiation (>420 nm) was investigated in the degradation of Rhodamine B at room temperature in air.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y. **a, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, Adv. Mater. 15, 353 (2003)

    Article  Google Scholar 

  2. A.P. Alivisatos, Science 271, 933 (1996)

    Article  Google Scholar 

  3. J. Zhou, Y. Ding, S.Z. Deng, L. Gong, N.S. Xu, Adv. Mater. 17, 2107 (2005)

    Article  Google Scholar 

  4. X. Duan, Y. Huang, Y. Cui, J. Wang, C.M. Lieber, Nature 409, 66 (2001)

    Article  Google Scholar 

  5. H.J. Dai, E.W. Wong, Y.Z. Lu, S.S. Fan, C.M. Lieber, Nature 375, 769 (1995)

    Article  Google Scholar 

  6. Y. Su, B. Lu, Nanotechnology 22, 285609 (2011)

    Article  Google Scholar 

  7. G.S. Bisht, G. Canton, A. Mirsepassi, L. Kulinsky, S. Oh, D. Dunn-Rankin, M.J. Madou, Nano Lett. 11, 1831 (2011)

    Article  Google Scholar 

  8. H.B. Peng, T.G. Ristroph, G.M. Schurmann, G.M. King, J. Yoon, V. Narayanamurti, J.A. Golovchenko, Appl. Phys. Lett. 83, 4238 (2003)

    Article  Google Scholar 

  9. K.J. Lethy, D. Beena, R. Vinod, Kumar, V.P. Mahadevan Pillai, V. Ganesan, V. Sathe, Appl. Surf. Sci. 254, 2369 (2008)

    Article  Google Scholar 

  10. Y.S. Kim, S.L. Ha, K. Kim, H. Yang, S.-Y. Choi, Y.T. Kim, J.T. Park, C.H. Lee, J. Choi, J. Paek, k. Lee, Appl. Phys. Lett. 86, 213105 (2005)

    Article  Google Scholar 

  11. A. Ponzoni, E. Comini, G. Sberveglieri, J. Zhou, S.Z. Deng, N.S. Xu, Y. Ding, Z.L. Wang, Appl. Phys. Lett. 88, 203101 (2006)

    Article  Google Scholar 

  12. K. Zhu, H. He, S. **e, X. Zhang, W. Zhou, S. **, B. Yue, Chem. Phys. Lett. 377, 317 (2003)

    Article  Google Scholar 

  13. Y. Qin, F. Wang, W. Shen, M. Hu, J. Alloys Compd. 540, 21 (2012)

    Article  Google Scholar 

  14. H.G. Choi, Y.H. Jung, D.K. Kim, J. Am. Ceram. Soc. 88, 1684 (2005)

    Article  Google Scholar 

  15. X.L. Li, J.F. Liu, Y.D. Li, Inorg. Chem. 42, 921 (2003)

    Article  Google Scholar 

  16. D. Zhang, J. Chang, Nano Lett. 8, 3283 (2008)

    Article  Google Scholar 

  17. D. Lin, H. Wu, W. Pan, Adv. Mater. 19, 3968 (2007)

    Article  Google Scholar 

  18. L. Li, X. Yin, S. Liu, Electrochem. Commun. 12, 1383 (2010)

    Article  Google Scholar 

  19. L.E. Greene, M. Law, B.D. Yuhas, P. Yang, J. Am. Ceram. Soc. 111, 18451 (2007)

    Google Scholar 

  20. D. Vernardou, H. Drosos, E. Spanakis, E. Koudoumas, C. Savvakis, N. Katsarakis, J. Mater. Chem. 21, 513 (2011)

    Article  Google Scholar 

  21. Y. Li, X. Zhou, W. Chen, L. Li, M. Zen, S. Qin, S. Sun, J. Hazard. Mater. 227–228, 25 (2012)

    Google Scholar 

  22. Y. Meng, J. Chen, Y. Wang, H. Dingy, Y. Shan, J. Mater. Sci. Technol. 25, 73 (2009)

    Google Scholar 

  23. M. Qamar, M.A. Gondal, K. Hayat, Z.H. Yamani, K. Al-Hooshani, J. Hazard. Mater. 170, 584 (2009)

    Article  Google Scholar 

  24. X. Gang, G. Wei, T. Ma, Appl. Surf. Sci. 256, 165 (2009)

    Article  Google Scholar 

  25. S. Wang, X. Shi, G. Shao, X. Duan, H. Yang, T. Wang, J. Phys. Chem. Solids 69, 2396 (2008)

    Article  Google Scholar 

  26. H.Y. Wang, P. Xu, T.M. Wang, Mater. Des. 23, 331 (2002)

    Article  Google Scholar 

  27. M.A. Gondal, A. Dastageer, A. Khalil, Catal. Commun. 11, 214 (2009)

    Article  Google Scholar 

  28. M.A. Gondal, M.N. Sayeed, A. Arfaj, Chem. Phys. Lett. 445, 325 (2007)

    Article  Google Scholar 

  29. C. Sui, J. Gong, T. Cheng, G. Zhou, S. Dong, Appl. Surf. Sci. 257, 8600 (2011)

    Article  Google Scholar 

  30. T.-A. Nguyen, T.-S. Jun, M. Rashid, Y.S. Kim, Mater. Lett. 65, 2823 (2011)

    Article  Google Scholar 

  31. G. Wang, Y. Ji, X. Huang, X. Yang, P.I. Gouma, M. Dudley, J. Phys. Chem. B 110, 23777 (2006)

    Article  Google Scholar 

  32. J. Leng, X. Xu, N. Lv, H. Fan, T. Zhang, J. Colloid Interface Sci. 356, 54 (2011)

    Article  Google Scholar 

  33. S.A.A. Mansour., M.A. Mohamed, M.I. Zaki, Thermochim. Acta 129, 187 (1988)

  34. W.E. Teo, S. Ramakrishna, Nanotechnology 16, 1878 (2005)

    Article  Google Scholar 

  35. M. Boulova, G. Lucazeau, J. Solid State. Chem. 167, 425 (2002)

    Article  Google Scholar 

  36. M. Kassem, Acta Metall. Sin. (Engl. Lett.) 27, 180 (2014)

  37. I.M. Szilagyi, J. Madarasz, G. Pokol, P. Kiraly, G. Tarkanyi, S. Saukko, J. Mizsei, A.L. Toth, A. Szabo, K. Varga-Josepovitso, Chem. Mater. 20, 4116 (2008)

    Article  Google Scholar 

  38. Q.F. Meng, K.R. Liu, L. Jiang, Q. Han, J.S. Chen, X.J. Wei, Acta Metall. Sin. (Engl. Lett.) 17, 263 (2004)

  39. L. Zhang, Y. He, Y. Wu, T. Wu, Mater. Sci. Eng. B 176, 1497 (2011)

    Article  Google Scholar 

  40. J. Zhuang, W. Dai, Q. Tian, Z. Li, L. **e, J. Wang, P. Liu, Langmuir 26, 9686 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the project from the National Magnetic Confinement Fusion Program (No. 2011GB108008) and the Natural Science Foundation of China (No. 51171006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaigui Zhu.

Additional information

Available online at http://springer.longhoe.net/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Wang, W. & Zhu, K. Controllable Synthesis of WO3 Nanowires by Electrospinning and Their Photocatalytic Properties Under Visible Light Irradiation. Acta Metall. Sin. (Engl. Lett.) 28, 1–6 (2015). https://doi.org/10.1007/s40195-014-0138-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-014-0138-z

Keywords

Navigation