Log in

In situ detection of welding defects: a review

  • Review Article
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

Weld defect detection is a crucial aspect for improving the productivity and quality of the welding process. Several non-destructive methods exist for the identification of defects post weld deposition. However, they only help assess the quality of the component and offer no inputs while the welding process is being performed. Real-time or in situ weld defect detection aids in the detection of defects during the welding process, allowing to take corrective measures or halt the welding to avoid further wastage of time and material. The current paper provides a brief description of various types of weld defects and the commonly used non-destructive testing (NDT) techniques used for identifying weld defects. It then proceeds to provide a detailed review of various methods available for in situ weld defect detection, classifying them based on their input signals. It also classifies the methods based on the type of algorithm used, along with an intuitive explanation of the commonly used algorithms in weld defect detection. The methods covered in this manuscript make use of different input signals that include audio, welding current and voltage, and optical signals also highlighting methods that use a combination of the abovementioned signals for in situ prediction of weld defects. A critical analysis of the efficacy, advantages, and drawbacks of each method is presented. Further, this work highlights a few research gaps identifying avenues for future research in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. Kalpakjian S (1984) Manufacturing processes for engineering materials. Pearson Education India. https://doi.org/10.1007/BF02833667

    Article  Google Scholar 

  2. Matsunawa A, Mizutani M, Katayama S, Seto N (2003) Porosity formation mechanism and its prevention in laser welding. Welding International 17(6):431–437. https://doi.org/10.1533/wint.2003.3138

    Article  Google Scholar 

  3. Kam DH, Lee TH, Kim DY, Kim J, Kang M (2021) Weld quality improvement and porosity reduction mechanism of zinc coated steel using tandem gas metal arc welding (GMAW). Journal of Materials Processing Technology:117127, https://doi.org/10.1016/j.jmatprotec.2021.117127

  4. Beidokhti B, Dolati A, Koukabi A (2009) Effects of alloying elements and microstructure on the susceptibility of the welded HSLA steel to hydrogen-induced cracking and sulfide stress cracking. Materials Science and Engineering: A 507(1–2):167–173. https://doi.org/10.1016/j.msea.2008.11.064

    Article  CAS  Google Scholar 

  5. Hanzaei AT, Marashi SPH, Ranjbarnodeh E (2018) The effect of hydrogen content and welding conditions on the hydrogen induced cracking of the api x70 steel weld. International Journal of Hydrogen Energy 43(19):9399–9407. https://doi.org/10.1016/j.ijhydene.2018.03.216

    Article  CAS  Google Scholar 

  6. Javadi Y, Sweeney NE, Mohseni E, MacLeod CN, Lines D, Vasilev M, Qiu Z, Mineo C, Pierce SG, Gachagan A (2021) Investigating the effect of residual stress on hydrogen cracking in multi-pass robotic welding through process compatible non-destructive testing. Journal of Manufacturing Processes 63:80–87. https://doi.org/10.1016/j.jmapro.2020.03.043

    Article  Google Scholar 

  7. Shafeek H, Gadelmawla E, Abdel-Shafy A, Elewa I (2004) Automatic inspection of gas pipeline welding defects using an expert vision system. NDT & E International 37(4):301–307. https://doi.org/10.1016/j.ndteint.2003.10.004

    Article  Google Scholar 

  8. Khumaidi A, Yuniarno EM, Purnomo MH (2017) Welding defect classification based on convolution neural network (CNN) and gaussian kernel. In: 2017 International seminar on intelligent technology and its applications (ISITIA), IEEE, pp 261–265. https://doi.org/10.1109/ISITIA.2017.8124091

  9. Chu HH, Wang ZY (2016) A vision-based system for post-welding quality measurement and defect detection. The International Journal of Advanced Manufacturing Technology 86(9):3007–3014. https://doi.org/10.1007/s00170-015-8334-1

    Article  Google Scholar 

  10. Zolfaghari A, Zolfaghari A, Kolahan F (2018) Reliability and sensitivity of magnetic particle nondestructive testing in detecting the surface cracks of welded components. N 33(3):290–300, https://doi.org/10.1080/10589759.2018.1428322

  11. Lopez AB, Santos J, Sousa JP, Santos TG, Quintino L (2019) Phased array ultrasonic inspection of metal additive manufacturing parts. Journal of Nondestructive Evaluation 38(3):1–11. https://doi.org/10.1007/s10921-019-0600-y

    Article  Google Scholar 

  12. Buckley J, Servent R (2009) Improvements in ultrasonic inspection of resistance spot welds. Insight-Non-Destructive Testing and Condition Monitoring 51(2):73–77

    Article  Google Scholar 

  13. Passini A, Oliveira ACd, Riva R, Travessa DN, Cardoso KR (2011) Ultrasonic inspection of AA6013 laser welded joints. Materials Research 14(3):417–422. https://doi.org/10.1590/S1516-14392011005000057

    Article  CAS  Google Scholar 

  14. Hwang YI, Park J, Kim HJ, Song SJ, Cho YS, Kang SS (2019) Performance comparison of ultrasonic focusing techniques for phased array ultrasonic inspection of dissimilar metal welds. International Journal of Precision Engineering and Manufacturing 20(4):525–534. https://doi.org/10.1007/s12541-019-00085-1

    Article  Google Scholar 

  15. Moles M, Dubé N, Labbé S, Ginzel E (2005) Review of ultrasonic phased arrays for pressure vessel and pipeline weld inspections. Journal of Pressure Vessel Technology. https://doi.org/10.1115/1.1991881

  16. Dorafshan S, Maguire M, Collins W (2018) Infrared thermography for weld inspection: feasibility and application. Infrastructures 3(4):45. https://doi.org/10.3390/infrastructures3040045

    Article  Google Scholar 

  17. Broberg P, Runnemalm A (2012) Detection of surface cracks in welds using active thermography. In: 18th World conference on nondestructive testing. Durban, South Africa, pp 16–20

  18. Li T, Almond DP, Rees DAS (2011) Crack imaging by scanning pulsed laser spot thermography. NDT & E International 44(2):216–225. https://doi.org/10.1016/j.ndteint.2010.08.006

    Article  Google Scholar 

  19. Schlichting J, Brauser S, Pepke LA, Maierhofer C, Rethmeier M, Kreutzbruck M (2012) Thermographic testing of spot welds. NDT & E International 48:23–29. https://doi.org/10.1016/j.ndteint.2012.02.003

    Article  CAS  Google Scholar 

  20. Meola C, Carlomagno GM, Squillace A, Giorleo G (2004) The use of infrared thermography for nondestructive evaluation of joints. Infrared physics & Technology 46(1–2):93–99. https://doi.org/10.1016/j.infrared.2004.03.013

    Article  Google Scholar 

  21. Todorov E, Nagy B, Levesque S, Ames N, Na J (2013) Inspection of laser welds with array eddy current technique. AIP Conference Proceedings, American Institute of Physics 1511:1065–1072. https://doi.org/10.1063/1.4789161

    Article  Google Scholar 

  22. Rao B, Raj B, Jayakumar T, Kalyanasundaram P (2002) An artificial neural network for eddy current testing of austenitic stainless steel welds. NDT & E International 35(6):393–398. https://doi.org/10.1016/S0963-8695(02)00007-5

    Article  CAS  Google Scholar 

  23. Dmitriev S, Malikov V, Sagalakov A, Shevtsova L (2017) Flaw inspection of welded joints in titanium alloys by the eddy current method. Welding International 31(8):608–611. https://doi.org/10.1080/09507116.2017.1295563

    Article  Google Scholar 

  24. Nadzri NA, Ishak M, Saari MM, Halil AM (2018) Development of eddy current testing system for welding inspection. In: 2018 9th IEEE Control and system graduate research colloquium (ICSGRC), IEEE, pp 94–98. https://doi.org/10.1109/ICSGRC.2018.8657511

  25. Gao P, Wang C, Li Y, Cong Z (2015) Electromagnetic and eddy current NDT in weld inspection: a review. Insight-Non-Destructive Testing and Condition Monitoring 57(6):337–345. https://doi.org/10.1784/insi.2015.57.6.337

    Article  Google Scholar 

  26. Hou W, Zhang D, Wei Y, Guo J, Zhang X (2020) Review on computer aided weld defect detection from radiography images. Applied Sciences 10(5):1878. https://doi.org/10.3390/app10051878

    Article  CAS  Google Scholar 

  27. Kasban H, Zahran O, Arafa H, El-Kordy M, Elaraby SM, Abd El-Samie F (2011) Welding defect detection from radiography images with a cepstral approach. NDT & E International 44(2):226–231. https://doi.org/10.1016/j.ndteint.2010.10.005

    Article  Google Scholar 

  28. Vilar R, Zapata J, Ruiz R (2009) An automatic system of classification of weld defects in radiographic images. NDT & E International 42(5):467–476. https://doi.org/10.1016/j.ndteint.2009.02.004

    Article  CAS  Google Scholar 

  29. Zahran O, Kasban H, El-Kordy M, Abd El-Samie F (2013) Automatic weld defect identification from radiographic images. NDT & E International 57:26–35. https://doi.org/10.1016/j.ndteint.2012.11.005

    Article  Google Scholar 

  30. Lopez A, Bacelar R, Pires I, Santos TG, Sousa JP, Quintino L (2018) Non-destructive testing application of radiography and ultrasound for wire and arc additive manufacturing. Additive Manufacturing 21:298–306. https://doi.org/10.1016/j.addma.2018.03.020

    Article  CAS  Google Scholar 

  31. Javadi Y, MacLeod CN, Pierce SG, Gachagan A, Lines D, Mineo C, Ding J, Williams S, Vasilev M, Mohseni E et al (2019) Ultrasonic phased array inspection of a wire arc additive manufactured (WAAM) sample with intentionally embedded defects. Additive Manufacturing 29:100806. https://doi.org/10.1016/j.addma.2019.100806

    Article  CAS  Google Scholar 

  32. Saini D, Floyd S (1998) An investigation of gas metal arc welding sound signature for on-line quality control. Welding Journal 77:172–s

  33. Grad L, Grum J, Polajnar I, Slabe JM (2004) Feasibility study of acoustic signals for on-line monitoring in short circuit gas metal arc welding. International Journal of Machine Tools and Manufacture 44(5):555–561. https://doi.org/10.1016/j.ijmachtools.2003.10.016

    Article  Google Scholar 

  34. Čudina M, Prezelj J, Polajnar I (2008) Use of audible sound for on-line monitoring of gas metal arc welding process. Metalurgija 47(2):81–85

    Google Scholar 

  35. Pal K, Bhattacharya S, Pal SK (2009) Prediction of metal deposition from arc sound and weld temperature signatures in pulsed MIG welding. The International Journal of Advanced Manufacturing Technology 45(11–12):1113. https://doi.org/10.1007/s00170-009-2052-5

    Article  Google Scholar 

  36. Pal K, Bhattacharya S, Pal SK (2010) Investigation on arc sound and metal transfer modes for on-line monitoring in pulsed gas metal arc welding. Journal of Materials Processing Technology 210(10):1397–1410. https://doi.org/10.1016/j.jmatprotec.2010.03.029

    Article  Google Scholar 

  37. Yusof M, Kamaruzaman M, Ishak M, Ghazali M (2017) Porosity detection by analyzing arc sound signal acquired during the welding process of gas pipeline steel. The International Journal of Advanced Manufacturing Technology 89(9–12):3661–3670. https://doi.org/10.1007/s00170-016-9343-4

    Article  Google Scholar 

  38. Luo H, Zeng H, Hu L, Hu X, Zhou Z (2005) Application of artificial neural network in laser welding defect diagnosis. Journal of Materials Processing Technology 170(1–2):403–411. https://doi.org/10.1016/j.jmatprotec.2005.06.008

    Article  CAS  Google Scholar 

  39. Pernambuco BSG, Steffens CR, Pereira JR, Werhli AV, Azzolin RZ, Estrada EdSD (2019) Online sound based arc-welding defect detection using artificial neural networks. In: 2019 Latin american robotics symposium (LARS), 2019 brazilian symposium on robotics (SBR) and 2019 workshop on robotics in education (WRE), IEEE, pp 263–268. https://doi.org/10.1109/LARS-SBR-WRE48964.2019.00053

  40. Chatterjee S, Chatterjee R, Pal K, Pal S, Pal SK (2012) Accurate detection of weld defects using chirplet transform. In: International conference on computer and automation engineering, 4th (ICCAE 2012); ASME: New York, NY, USA, pp 49–54. https://doi.org/10.1115/1.859940.paper8

  41. Mann S, Haykin S (1995) The chirplet transform: physical considerations. IEEE Transactions on Signal Processing 43(11):2745–2761. https://doi.org/10.1109/78.482123

    Article  Google Scholar 

  42. Huang W, Kovacevic R (2009) Feasibility study of using acoustic signals for online monitoring of the depth of weld in the laser welding of high-strength steels. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 223(4):343–361. https://doi.org/10.1243/09544054JEM1320

    Article  CAS  Google Scholar 

  43. Roca AS, Fals HC, Fernández JB, Macías EJ, Adán FS (2007) New stability index for short circuit transfer mode in (GMAW) process using acoustic emission signals. Science and Technology of Welding and Joining 12(5):460–466. https://doi.org/10.1179/174329307X213882

    Article  Google Scholar 

  44. Gu H, Duley WW (1996) A statistical approach to acoustic monitoring of laser welding. Journal of Physics D: Applied Physics 29(3):556

    Article  CAS  Google Scholar 

  45. Zhang L, Basantes-Defaz AC, Ozevin D, Indacochea E (2019) Real-time monitoring of welding process using air-coupled ultrasonics and acoustic emission. The International Journal of Advanced Manufacturing Technology 101(5):1623–1634. https://doi.org/10.1007/s00170-018-3042-2

    Article  Google Scholar 

  46. Asif K, Zhang L, Derrible S, Indacochea JE, Ozevin D, Ziebart B (2020) Machine learning model to predict welding quality using air-coupled acoustic emission and weld inputs. Journal of Intelligent Manufacturing:1–15. https://doi.org/10.1007/s10845-020-01667-x

  47. Gaja H, Liou F (2017) Defects monitoring of laser metal deposition using acoustic emission sensor. The International Journal of Advanced Manufacturing Technology 90(1–4):561–574. https://doi.org/10.1007/s00170-016-9366-x

    Article  Google Scholar 

  48. Kanungo T, Mount DM, Netanyahu NS, Piatko CD, Silverman R, Wu AY (2002) An efficient k-means clustering algorithm: analysis and implementation. IEEE transactions on pattern analysis and machine intelligence 24(7):881–892. https://doi.org/10.1109/TPAMI.2002.1017616

    Article  Google Scholar 

  49. Roca AS, Fals H, Fernández J, Macias E, De La Parte M (2009) Artificial neural networks and acoustic emission applied to stability analysis in gas metal arc welding. Science and Technology of Welding and Joining 14(2):117–124. https://doi.org/10.1179/136217108X382981

    Article  CAS  Google Scholar 

  50. Subramaniam S (2013) Acoustic emission-based monitoring approach for friction stir welding of aluminum alloy AA6063-T6 with different tool pin profiles. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 227(3):407–416. https://doi.org/10.1177/0954405412472673

    Article  CAS  Google Scholar 

  51. Chen C, Kovacevic R, Jandgric D (2003) Wavelet transform analysis of acoustic emission in monitoring friction stir welding of 6061 aluminum. International Journal of Machine Tools and Manufacture 43(13):1383–1390. https://doi.org/10.1016/S0890-6955(03)00130-5

    Article  Google Scholar 

  52. Griem HR (2005) Principles of plasma spectroscopy. 2, Cambridge University Press, https://doi.org/10.1007/978-94-017-0445-8_34

  53. Zhiyong L, Bao W, **gbin D (2009) Detection of GTA welding quality and disturbance factors with spectral signal of arc light. Journal of materials processing technology 209(10):4867–4873. https://doi.org/10.1016/j.jmatprotec.2009.01.010

    Article  CAS  Google Scholar 

  54. Harooni M, Carlson B, Kovacevic R (2014) Detection of defects in laser welding of AZ31B magnesium alloy in zero-gap lap joint configuration by a real-time spectroscopic analysis. Optics and Lasers in Engineering 56:54–66. https://doi.org/10.1016/j.optlaseng.2013.11.015

    Article  Google Scholar 

  55. Mirapeix J, García-Allende P, Cobo A, Conde O, López-Higuera J (2007) Real-time arc-welding defect detection and classification with principal component analysis and artificial neural networks. NDT & E International 40(4):315–323. https://doi.org/10.1016/j.ndteint.2006.12.001

    Article  CAS  Google Scholar 

  56. You D, Gao X, Katayama S (2014) WPD-PCA-based laser welding process monitoring and defects diagnosis by using FNN and SVM. IEEE Transactions on Industrial Electronics 62(1):628–636. https://doi.org/10.1109/TIE.2014.2319216

    Article  Google Scholar 

  57. Huang Y, Zhao D, Chen H, Yang L, Chen S (2018) Porosity detection in pulsed GTA welding of 5A06 Al alloy through spectral analysis. Journal of Materials Processing Technology 259:332–340. https://doi.org/10.1016/j.jmatprotec.2018.05.006

    Article  CAS  Google Scholar 

  58. Park HS, Jun CH (2009) A simple and fast algorithm for k-medoids clustering. Expert Systems with Applications 36(2):3336–3341. https://doi.org/10.1016/j.eswa.2008.01.039

    Article  Google Scholar 

  59. Garcia-Allende P, Mirapeix J, Conde O, Cobo A, Lopez-Higuera J (2009) Spectral processing technique based on feature selection and artificial neural networks for arc-welding quality monitoring. NDT & E International 42(1):56–63. https://doi.org/10.1016/j.ndteint.2008.07.004

    Article  CAS  Google Scholar 

  60. Mirapeix J, Cobo A, Fuentes J, Davila M, Etayo JM, Lopez-Higuera JM (2009) Use of the plasma spectrum RMS signal for arc-welding diagnostics. Sensors 9(7):5263–5276. https://doi.org/10.3390/s90705263

    Article  CAS  Google Scholar 

  61. Bebiano D, Alfaro SC (2009) A weld defects detection system based on a spectrometer. Sensors 9(4):2851–2861. https://doi.org/10.3390/s90402851

    Article  CAS  Google Scholar 

  62. Zhang Z, Kannatey-Asibu E, Chen S, Huang Y, Xu Y (2015) Online defect detection of al alloy in arc welding based on feature extraction of arc spectroscopy signal. The International Journal of Advanced Manufacturing Technology 79(9):2067–2077. https://doi.org/10.1007/s00170-015-6966-9

    Article  Google Scholar 

  63. Bacioiu D, Melton G, Papaelias M, Shaw R (2019) Automated defect classification of aluminium 5083 TIG welding using HDR camera and neural networks. Journal of Manufacturing Processes 45:603–613. https://doi.org/10.1016/j.jmapro.2019.07.020

    Article  Google Scholar 

  64. Zhang Z, Wen G, Chen S (2019) Weld image deep learning-based on-line defects detection using convolutional neural networks for al alloy in robotic arc welding. Journal of Manufacturing Processes 45:208–216. https://doi.org/10.1016/j.jmapro.2019.06.023

    Article  Google Scholar 

  65. **a C, Pan Z, Fei Z, Zhang S, Li H (2020) Vision based defects detection for keyhole TIGwelding using deep learning with visual explanation. Journal of Manufacturing Processes 56:845–855. https://doi.org/10.1016/j.jmapro.2020.05.033

    Article  Google Scholar 

  66. He K, Zhang X, Ren S, Sun J (2015) Deep residual learning for image recognition. https://doi.org/10.1109/CVPR.2016.90, arxiv:1512.03385

  67. Serio L, Palumbo D, Galietti U, De Filippis L, Ludovico A (2016) Monitoring of the friction stir welding process by means of thermography. NDT & E International 31(4):371–383. https://doi.org/10.1080/10589759.2015.1121266

    Article  CAS  Google Scholar 

  68. Alfaro SC, Franco FD (2010) Exploring infrared sensoring for real time welding defects monitoring in GTAW. Sensors 10(6):5962–5974. https://doi.org/10.3390/s100605962

    Article  Google Scholar 

  69. Kryukov I, Schüddekopf S, Böhm S, Mund M, Kreling S, Dilger K (2016) Non-destructive online-testing method for friction stir welding using infrared thermography. In: 19th World conference on non-destructive testing

  70. Hassler U, Gruber D, Hentschel O, Sukowski F, Grulich T, Seifert L (2016) In-situ monitoring and defect detection for laser metal deposition by using infrared thermography. Physics Procedia 83:1244–1252. https://doi.org/10.1016/j.phpro.2016.08.131

    Article  CAS  Google Scholar 

  71. Adolfsson S, Bahrami A, Bolmsjö G, Claesson I (1999) On-line quality monitoring in short-circuit gas metal arc welding. Welding Journal-New York, 78:59–s

  72. Sumesh A, Rameshkumar K, Raja A, Mohandas K, Santhakumari A, Shyambabu R (2017) Establishing correlation between current and voltage signatures of the arc and weld defects in GMAW process. Arabian Journal for Science and Engineering 42(11):4649–4665. https://doi.org/10.1007/s13369-017-2609-9

    Article  CAS  Google Scholar 

  73. Simpson S (2007) Signature images for arc welding fault detection. Science and Technology of Welding and Joining 12(6):481–486. https://doi.org/10.1179/174329307X213909

    Article  Google Scholar 

  74. Wu C, Gao J, Hu J (2006) Real-time sensing and monitoring in robotic gas metal arc welding. Measurement Science and Technology 18(1):303. https://doi.org/10.1088/0957-0233/18/1/037

    Article  CAS  Google Scholar 

  75. Madigan R (1999) Arc sensing for defects in constant-voltage gas metal arc welding. Weld J 78:322S-328S

    Google Scholar 

  76. Wu C, Polte T, Rehfeldt D (2000) Gas metal arc welding process monitoring and quality evaluation using neural networks. Science and Technology of Welding and Joining 5(5):324–328. https://doi.org/10.1179/136217100101538380

    Article  Google Scholar 

  77. Kohonen T, Honkela T (2007) Kohonen network. Scholarpedia 2(1):1568. https://doi.org/10.4249/scholarpedia.1568

    Article  Google Scholar 

  78. Huang Y, Yang D, Wang K, Wang L, Fan J (2020) A quality diagnosis method of GMAW based on improved empirical mode decomposition and extreme learning machine. Journal of Manufacturing Processes 54:120–128. https://doi.org/10.1016/j.jmapro.2020.03.006

    Article  Google Scholar 

  79. Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: theory and applications. Neurocomputing 70(1–3):489–501. https://doi.org/10.1016/j.neucom.2005.12.126

    Article  Google Scholar 

  80. Zhang Z, Chen X, Chen H, Zhong J, Chen S (2014) Online welding quality monitoring based on feature extraction of arc voltage signal. The International Journal of Advanced Manufacturing Technology 70(9–12):1661–1671. https://doi.org/10.1007/s00170-013-5402-2

    Article  Google Scholar 

  81. Barbe K, Pintelon R, Schoukens J (2009) Welch method revisited: nonparametric power spectrum estimation via circular overlap. IEEE Transactions on Signal Processing 58(2):553–565. https://doi.org/10.1109/TSP.2009.2031724

    Article  Google Scholar 

  82. Huang Y, Xu S, Yang L, Zhao S, Shi Y et al (2019) Defect detection during laser welding using electrical signals and high-speed photography. Journal of Materials Processing Technology 271:394–403. https://doi.org/10.1016/j.jmatprotec.2019.04.022

    Article  Google Scholar 

  83. Shin S, ** C, Yu J, Rhee S (2020) Real-time detection of weld defects for automated welding process base on deep neural network. Metals 10(3):389. https://doi.org/10.3390/met10030389

    Article  CAS  Google Scholar 

  84. Zhang Z, Chen S (2017) Real-time seam penetration identification in arc welding based on fusion of sound, voltage and spectrum signals. Journal of Intelligent Manufacturing 28(1):207–218. https://doi.org/10.1007/s10845-014-0971-y

    Article  Google Scholar 

  85. Zhang Z, Chen H, Xu Y, Zhong J, Lv N, Chen S (2015) Multisensor-based real-time quality monitoring by means of feature extraction, selection and modeling for al alloy in arc welding. Mechanical Systems and Signal Processing 60:151–165. https://doi.org/10.1016/j.ymssp.2014.12.021

    Article  Google Scholar 

  86. Zhang Z, Wen G, Chen S (2016) Multisensory data fusion technique and its application to welding process monitoring. In: 2016 IEEE Workshop on advanced robotics and its social impacts (ARSO), IEEE, pp 294–298. https://doi.org/10.1109/ARSO.2016.7736298

  87. Deng F, Huang Y, Lu S, Chen Y, Chen J, Feng H, Zhang J, Yang Y, Hu J, Lam TL et al (2020) A multi-sensor data fusion system for laser welding process monitoring. IEEE Access 8:147349–147357. https://doi.org/10.1109/ACCESS.2020.3015529

    Article  Google Scholar 

  88. Griffin D, Lim J (1984) Signal estimation from modified short-time fourier transform. IEEE Transactions on Acoustics, Speech, and Signal Processing 32(2):236–243. https://doi.org/10.1109/ICASSP.1983.1172092

    Article  Google Scholar 

  89. Daubechies I (1990) The wavelet transform, time-frequency localization and signal analysis. IEEE Transactions on iInformation Theory 36(5):961–1005. https://doi.org/10.1109/18.57199

    Article  Google Scholar 

  90. Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen NC, Tung CC, Liu HH (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences 454(1971):903–995. https://doi.org/10.1098/rspa.1998.0193

    Article  Google Scholar 

  91. Wu Z, Huang NE (2009) Ensemble empirical mode decomposition: a noise-assisted data analysis method. Advances in Adaptive Data Analysis 1(01):1–41. https://doi.org/10.1142/S1793536909000047

    Article  Google Scholar 

  92. Torres ME, Colominas MA, Schlotthauer G, Flandrin P (2011) A complete ensemble empirical mode decomposition with adaptive noise. In: 2011 IEEE international conference on acoustics, speech and signal processing (ICASSP), IEEE, pp 4144–4147. https://doi.org/10.1109/ICASSP.2011.5947265

  93. Portnoff M (1980) Time-frequency representation of digital signals and systems based on short-time fourier analysis. IEEE Transactions on Acoustics, Speech, and Signal Processing 28(1):55–69. https://doi.org/10.1109/TASSP.1980.1163359

    Article  Google Scholar 

  94. Allen JB, Rabiner LR (1977) A unified approach to short-time fourier analysis and synthesis. Proceedings of the IEEE 65(11):1558–1564. https://doi.org/10.1109/PROC.1977.10770

    Article  Google Scholar 

  95. Holschneider M, Kronland-Martinet R, Morlet J, Tchamitchian P (1990) A real-time algorithm for signal analysis with the help of the wavelet transform. In: Wavelets, Springer, pp 286–297. https://doi.org/10.1007/978-3-642-75988-8_28

  96. Graps A (1995) An introduction to wavelets. IEEE Computational Science and Engineering 2(2):50–61. https://doi.org/10.1109/99.388960

    Article  Google Scholar 

  97. Shensa MJ et al (1992) The discrete wavelet transform: wedding the a trous and mallat algorithms. IEEE Transactions on Signal Processing 40(10):2464–2482. https://doi.org/10.1109/78.157290

    Article  Google Scholar 

  98. Gaci S (2016) A new ensemble empirical mode decomposition (EEMD) denoising method for seismic signals. Energy Procedia 97:84–91. https://doi.org/10.1016/j.egypro.2016.10.026

    Article  Google Scholar 

  99. Yeh JR, Shieh JS, Huang NE (2010) Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method. Advances in Adaptive Data Analysis 2(02):135–156. https://doi.org/10.1142/S1793536910000422

    Article  Google Scholar 

  100. Jiang L, Tan H, Li X, Chen L, Yang D (2019) Ceemdan-based permutation entropy: a suitable feature for the fault identification of spiral-bevel gears. Shock and Vibration 2019. https://doi.org/10.1155/2019/7806015

  101. Bissell A (1969) Cusum techniques for quality control. Journal of the Royal Statistical Society: Series C (Applied Statistics) 18(1):1–25. https://doi.org/10.2307/2346436

    Article  Google Scholar 

  102. Hotelling H (1933) Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology 24(6):417. https://doi.org/10.1037/h0071325

    Article  Google Scholar 

  103. Quinlan JR (1986) Induction of decision trees. Machine Learning 1(1):81–106. https://doi.org/10.1007/BF00116251

    Article  Google Scholar 

  104. Suykens JA, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Processing Letters 9(3):293–300. https://doi.org/10.1023/A:1018628609742

    Article  Google Scholar 

  105. Rish I, et al. (2001) An empirical study of the naive Bayes classifier. In: IJCAI 2001 workshop on empirical methods in artificial intelligence, vol 3, pp 41–46

  106. Van Der Malsburg C (1986) Frank rosenblatt: principles of neurodynamics: perceptrons and the theory of brain mechanisms. In: Brain theory, Springer, pp 245–248, https://doi.org/10.1007/978-3-642-70911-1_20

  107. McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics 5(4):115–133. https://doi.org/10.1007/BF02478259

    Article  Google Scholar 

  108. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444. https://doi.org/10.1038/nature14539

    Article  CAS  Google Scholar 

  109. Yegnanarayana B (2009) Artificial neural networks. PHI Learning Pvt, Ltd

  110. Deng L, Yu D (2014) Deep learning: methods and applications. Foundations and Trends in Signal Processing 7(3–4):197–387. https://doi.org/10.1561/2000000039

    Article  Google Scholar 

  111. Razzak MI, Naz S, Zaib A (2018) Deep learning for medical image processing: overview, challenges and the future. Classification in BioApps:323–350. https://doi.org/10.1007/978-3-319-65981-7_12

  112. Min S, Lee B, Yoon S (2017) Deep learning in bioinformatics. Briefings in Bioinformatics 18(5):851–869. https://doi.org/10.1093/bib/bbw068

    Article  Google Scholar 

  113. LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11):2278–2324. https://doi.org/10.1109/5.726791

    Article  Google Scholar 

  114. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. ar**v:14091556

  115. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1–9. https://doi.org/10.1109/CVPR.2015.7298594

  116. Rumelhart DE, Hinton GE, Williams RJ (1985) Learning internal representations by error propagation. California Univ San Diego La Jolla Inst for Cognitive Science, Tech. rep

  117. Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial networks. ar**v:14062661. https://doi.org/10.1145/3422622

  118. Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, Andreetto M, Adam H (2017) Mobilenets: efficient convolutional neural networks for mobile vision applications. ar**v:170404861

  119. Zhang X, Zhou X, Lin M, Sun J (2018) Shufflenet: An extremely efficient convolutional neural network for mobile devices. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 6848–6856. https://doi.org/10.1109/CVPR.2018.00716

  120. Kiranyaz S, Ince T, Hamila R, Gabbouj M (2015) Convolutional neural networks for patient-specific ECG classification. In: 2015 37th Annual international conference of the IEEE engineering in medicine and biology society (EMBC), IEEE, pp 2608–2611. https://doi.org/10.1109/EMBC.2015.7318926

Download references

Acknowledgements

The authors gratefully acknowledge the support of the Science and Engineering Research Board, Department of Science and Technology, Government of India under the Ramanujan Research Grant (Grant number: SB/S2/RJN-093/2015) and Core Research Grant (CRG/2020/005089); authors also acknowledge the support of the Naval Research Board (NRB/4003/PG/436).

Funding

This work was supported by the Science and Engineering Research Board, Department of Science and Technology, Government of India under the Ramanujan Research Grant (Grant number: SB/S2/RJN-093/2015) and Core Research Grant (CRG/2020/005089). Authors also acknowledge the support of Naval Research Board (NRB/4003/PG/436).

Author information

Authors and Affiliations

Authors

Contributions

Anirudh Sampath Madhvacharyula: Conceptualization, methodology, formal analysis, writing original draft, and visualization

Araveeti V Sai Pavan: Conceptualization, methodology, formal analysis, writing original draft, and visualization

Subrahmanyam Gorthi: Conceptualization, methodology, supervision, formal analysis, writing - review and editing, and visualization

Srihari Chitral: Conceptualization, methodology, formal analysis, writing original draft, and visualization

N. Venkaiah: Conceptualization, methodology, supervision, formal analysis, writing - review and editing, and visualization

Degala Venkata Kiran: Conceptualization, methodology, resources, supervision, formal analysis, writing - review and editing, visualization, project administration, and funding acquisition

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

The authors give their consent for the publication of the submitted manuscript in the journal International Journal of Advanced Manufacturing Technology.

Additional information

Recommended for publication by Commission V - NDT and Quality Assurance of Welded Products.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madhvacharyula, A.S., Pavan, A.V.S., Gorthi, S. et al. In situ detection of welding defects: a review. Weld World 66, 611–628 (2022). https://doi.org/10.1007/s40194-021-01229-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-021-01229-6

Keywords

Navigation