Log in

Fluid Mechanics as a Driver of Tissue-Scale Mechanical Signaling in Organogenesis

  • Tissue Engineering and Regenerative Medicine: Organogenesis (Bryan Brown and Christopher L. Dearth, Section Editors)
  • Published:
Current Pathobiology Reports

Abstract

Purpose of Review

Organogenesis is the process during development by which cells self-assemble into complex, multi-scale tissues. While significant focus and research effort have demonstrated the importance of solid mechanics in organogenesis, less attention has been given to the fluid forces that provide mechanical cues over tissue length scales.

Recent Findings

Fluid motion and pressure are capable of creating spatial gradients of forces acting on cells, thus eliciting distinct and localized signaling patterns essential for proper organ formation. Understanding the multi-scale nature of the mechanics is critically important to decipher how mechanical signals sculpt develo** organs.

Summary

This review outlines various mechanisms by which tissues generate, regulate, and sense fluid forces and highlights the impact of these forces and mechanisms in case studies of normal and pathological development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Recently published papers of particular interest have been highlighted as: • Of importance •• Of major importance

  1. Nelson CM, Gleghorn JP (2012) Sculpting organs: mechanical regulation of tissue development. Annu Rev Biomed Eng 14(1):129–154

    Article  CAS  PubMed  Google Scholar 

  2. • Gleghorn JP, Manivannan S, Nelson CM (2013) Quantitative approaches to uncover physical mechanisms of tissue morphogenesis. Curr Opin Biotechnol 24(5):954–961. This paper reviews the current experimental techniques and models used to quantify physical forces acting on cells and tissues during development

  3. Davidson LA (2011) Embryo mechanics: balancing force production with elastic resistance during morphogenesis. Curr Top Dev Biol 95:215–241

    Article  PubMed  Google Scholar 

  4. Mammoto T, Mammoto A, Ingber DE (2013) Mechanobiology and developmental control. Annu Rev Cell Dev Biol 29(1):27–61

    Article  CAS  PubMed  Google Scholar 

  5. • Heisenberg C-P, Bellaïche Y (2013) Forces in tissue morphogenesis and patterning. Cell 153(5):948–962. This paper reviews the various forces that act on the cellular level (cell-EMC and integrin forces, cell-cell interactions, internal actin-myosin forces, etc.), mechanotransduction into cellular signals, and how these forces can influence morphogenesis

  6. Warburton D, El-Hashash A, Carraro G, Tiozzo C, Sala F, Rogers O, De Langhe S, Kemp PJ, Riccardi D, Torday J, Bellusci S, Shi W, Lubkin SR, Jesudason E (2010) Lung organogenesis. Curr Top Dev Biol 90:73–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Miquerol L, Kelly RG (2013) Organogenesis of the vertebrate heart. Wiley Interdiscip Rev Dev Biol 2(1):17–29

    Article  CAS  PubMed  Google Scholar 

  8. Cain JE, Rosenblum ND (2011) Control of mammalian kidney development by the Hedgehog signaling pathway. Pediatr Nephrol Berl Ger 26(9):1365–1371

    Article  Google Scholar 

  9. Zhao B, Tumaneng K, Guan K-L (2011) The Hippo pathway in organ size control, tissue regeneration and stem cell self-renewal. Nat Cell Biol 13(8):877–883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Discher DE, Janmey P, Wang Y-L (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751):1139–1143

    Article  CAS  PubMed  Google Scholar 

  11. Gilbert PM, Havenstrite KL, Magnusson KEG, Sacco A, Leonardi NA, Kraft P, Nguyen NK, Thrun S, Lutolf MP, Blau HM (2010) Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 329(5995):1078–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Huebsch N, Arany PR, Mao AS, Shvartsman D, Ali OA, Bencherif SA, Rivera-Feliciano J, Mooney DJ (2010) Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat Mater 9(6):518–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Connelly JT, Gautrot JE, Trappmann B, Tan DW-M, Donati G, Huck WTS, Watt FM (2010) Actin and serum response factor transduce physical cues from the microenvironment to regulate epidermal stem cell fate decisions. Nat Cell Biol 12(7):711–718

    Article  CAS  PubMed  Google Scholar 

  14. • Fedorchak GR, Kaminski A, Lammerding J (2014) Cellular mechanosensing: getting to the nucleus of it all. Prog Biophys Mol Biol 115(2–3):76–92. This paper reviews the role of the nucleus as a mechanosensor, mediated by LINC complex proteins, nuclear lamins, and other nuclear envelope proteins that can sense changing cellular mechanical environments

  15. Gjorevski N, Nelson CM (2010) Endogenous patterns of mechanical stress are required for branching morphogenesis. Integr Biol Quant Biosci Nano Macro 2(9):424–434

    CAS  Google Scholar 

  16. Nelson CM, Jean RP, Tan JL, Liu WF, Sniadecki NJ, Spector AA, Chen CS (2005) Emergent patterns of growth controlled by multicellular form and mechanics. Proc Natl Acad Sci USA 102(33):11594–11599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kim JH, Serra-Picamal X, Tambe DT, Zhou EH, Park CY, Sadati M, Park J-A, Krishnan R, Gweon B, Millet E, Butler JP, Trepat X, Fredberg JJ (2013) Propulsion and navigation within the advancing monolayer sheet. Nat Mater 12(9):856–863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Taber LA (2014) Morphomechanics: transforming tubes into organs. Curr Opin Genet Dev 27:7–13

    Article  CAS  PubMed  Google Scholar 

  19. • Varner VD, Taber LA (2012) Not just inductive: a crucial mechanical role for the endoderm during heart tube assembly. Dev Camb Engl 139(9):1680–1690. This paper uses computational modeling and experiments on chick embryos, to demonstrate an active mechanical role for the endoderm during heart tube assembly. Inhibition of cytoskeletal contractility often induced cardia bifida and abnormal foregut morphogenesis

  20. Soufan AT, van den Berg G, Ruijter JM, de Boer PAJ, van den Hoff MJB, Moorman AFM (2006) Regionalized sequence of myocardial cell growth and proliferation characterizes early chamber formation. Circ Res 99(5):545–552

    Article  CAS  PubMed  Google Scholar 

  21. •• Shi Y, Yao J, Xu G, Taber LA (2014) Bending of the loo** heart: differential growth revisited. J Biomech Eng 136(8):081002. This paper uses finite element modeling and ex vivo culture of primitive chick hearts to demonstrate that differential hypertrophic growth in the myocardium (MY). This produces different forces within the heart tube, and represents the primary cause of the bending component of c-loo**

  22. Adamson TM, Brodecky V, Lambert TF, Maloney JE, Ritchie BC, Walker AM (1975) Lung liquid production and composition in the “in utero” foetal lamb. Aust J Exp Biol Med Sci 53(1):65–75

    Article  CAS  PubMed  Google Scholar 

  23. Adams M (2010) The primary cilium: an orphan organelle finds a home. Nat Educ 3(9):54

    Google Scholar 

  24. Cartwright JHE, Piro O, Tuval I (2004) Fluid-dynamical basis of the embryonic development of left-right asymmetry in vertebrates. Proc Natl Acad Sci USA 101(19):7234–7239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yoshiba S, Hamada H (2014) Roles of cilia, fluid flow, and Ca2+ signaling in breaking of left-right symmetry. Trends Genet TIG 30(1):10–17

    Article  CAS  PubMed  Google Scholar 

  26. Grimes DT, Keynton JL, Buenavista MT, ** X, Patel SH, Kyosuke S, Vibert J, Williams DJ, Hamada H, Hussain R, Nauli SM, Norris DP (2016) Genetic analysis reveals a hierarchy of interactions between polycystin-encoding genes and genes controlling cilia function during left-right determination. PLoS Genet 12(6):e1006070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Harvey RP (1998) Links in the left/right axial pathway. Cell 94(3):273–276

    Article  CAS  PubMed  Google Scholar 

  28. •• Ranade SS, Syeda R, Patapoutian A (2015) Mechanically activated ion channels. Neuron 87(6):1162–1179. This paper reviews the current understanding of the regulation, function, and structure of mechanosensitive ion channels in cells, while also reviewing the various assays to examine these proteins

  29. • McCormick ME, Tzima E (2016) Pulling on my heartstrings: mechanotransduction in cardiac development and function. Curr Opin Hematol 23(3):235–242. This paper reviews the current understanding of the role of wall shear stress and mechanotransduction during various stages of cardiac development

  30. Heckel E, Boselli F, Roth S, Krudewig A, Belting H-G, Charvin G, Vermot J (2015) Oscillatory flow modulates mechanosensitive klf2a expression through trpv4 and trpp2 during heart valve development. Curr Biol 25(10):1354–1361

    Article  CAS  PubMed  Google Scholar 

  31. Butcher JT, Markwald RR (2007) Valvulogenesis: the moving target. Philos Trans R Soc Lond B 362(1484):1489–1503

    Article  CAS  Google Scholar 

  32. Forouhar AS, Liebling M, Hickerson A, Nasiraei-Moghaddam A, Tsai H-J, Hove JR, Fraser SE, Dickinson ME, Gharib M (2006) The embryonic vertebrate heart tube is a dynamic suction pump. Science 312(5774):751–753

    Article  CAS  PubMed  Google Scholar 

  33. Banjo T, Grajcarek J, Yoshino D, Osada H, Miyasaka KY, Kida YS, Ueki Y, Nagayama K, Kawakami K, Matsumoto T, Sato M, Ogura T (2013) Haemodynamically dependent valvulogenesis of zebrafish heart is mediated by flow-dependent expression of miR-21. Nat Commun 4:1978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Buskohl PR, Jenkins JT, Butcher JT (2012) Computational simulation of hemodynamic-driven growth and remodeling of embryonic atrioventricular valves. Biomech Model Mechanobiol 11(8):1205–1217

    Article  PubMed  PubMed Central  Google Scholar 

  35. Rodbard S (1956) Vascular modifications induced by flow. Am Heart J 51(6):926–942

    Article  CAS  PubMed  Google Scholar 

  36. Slough J, Cooney L, Brueckner M (2008) Monocilia in the embryonic mouse heart suggest a direct role for cilia in cardiac morphogenesis. Dev Dyn Off Publ Am Assoc Anat 237(9):2304–2314

    Google Scholar 

  37. Burnicka-Turek O, Steimle JD, Huang W, Felker L, Kamp A, Kweon J, Peterson M, Reeves RH, Maslen CL, Gruber PJ, Yang XH, Shendure J, Moskowitz IP (2016) Cilia gene mutations cause atrioventricular septal defects by multiple mechanisms. Hum Mol Genet. doi:10.1093/hmg/ddw155

    PubMed  Google Scholar 

  38. Carmeliet P (2000) Mechanisms of angiogenesis and arteriogenesis. Nat Med 6(4):389–395

    Article  CAS  PubMed  Google Scholar 

  39. McGrath KE, Koniski AD, Malik J, Palis J (2003) Circulation is established in a stepwise pattern in the mammalian embryo. Blood 101(5):1669–1676

    Article  CAS  PubMed  Google Scholar 

  40. Risau W, Flamme I (1995) Vasculogenesis. Annu Rev Cell Dev Biol 11:73–91

    Article  CAS  PubMed  Google Scholar 

  41. Risau W (1997) Mechanisms of angiogenesis. Nature 386(6626):671–674

    Article  CAS  PubMed  Google Scholar 

  42. le Noble F, Fleury V, Pries A, Corvol P, Eichmann A, Reneman RS (2005) Control of arterial branching morphogenesis in embryogenesis: go with the flow. Cardiovasc Res 65(3):619–628

    Article  CAS  PubMed  Google Scholar 

  43. Ranade SS, Qiu Z, Woo S-H, Hur SS, Murthy SE, Cahalan SM, Xu J, Mathur J, Bandell M, Coste B, Li Y-SJ, Chien S, Patapoutian A (2014) Piezo1, a mechanically activated ion channel, is required for vascular development in mice. Proc Natl Acad Sci USA 111(28):10347–10352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. •• Li J, Hou B, Tumova S, Muraki K, Bruns A, Ludlow MJ, Sedo A, Hyman AJ, McKeown L, Young RS, Yuldasheva NY, Majeed Y, Wilson LA, Rode B, Bailey MA, Kim HR, Fu Z, Carter DAL, Bilton J, Imrie H, Ajuh P, Dear TN, Cubbon RM, Kearney MT, Prasad KR, Evans PC, Ainscough JFX, Beech DJ (2014) Piezo1 integration of vascular architecture with physiological force. Nature 515(7526):279–282. This paper demonstrates that Piezo1 (Fam38a) ion channels are mechanosensitive to shear stress, and this mechanotransduction event can determine vascular structure in both development and adult physiology

  45. Borbiro I, Badheka D, Rohacs T (2015) Activation of TRPV1 channels inhibits mechanosensitive Piezo channel activity by depleting membrane phosphoinositides. Sci Signal 8(363):ra15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Peyronnet R, Martins JR, Duprat F, Demolombe S, Arhatte M, Jodar M, Tauc M, Duranton C, Paulais M, Teulon J, Honoré E, Patel A (2013) Piezo1-dependent stretch-activated channels are inhibited by Polycystin-2 in renal tubular epithelial cells. EMBO Rep 14(12):1143–1148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Poole K, Herget R, Lapatsina L, Ngo H-D, Lewin GR (2014) Tuning Piezo ion channels to detect molecular-scale movements relevant for fine touch. Nat Commun 5:3520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Olver RE, Strang LB (1974) Ion fluxes across the pulmonary epithelium and the secretion of lung liquid in the foetal lamb. J Physiol 241(2):327–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zeitlin PL, Loughlin GM, Guggino WB (1988) Ion transport in cultured fetal and adult rabbit tracheal epithelia. Am J Physiol 254(5 Pt 1):C691–C698

    CAS  PubMed  Google Scholar 

  50. McCray PB, Welsh MJ (1991) Develo** fetal alveolar epithelial cells secrete fluid in primary culture. Am J Physiol 260(6 Pt 1):L494–L500

    CAS  PubMed  Google Scholar 

  51. Olver RE, Walters DV, Wilson SM (2004) Developmental regulation of lung liquid transport. Annu Rev Physiol 66:77–101

    Article  CAS  PubMed  Google Scholar 

  52. Brennan SC, Wilkinson WJ, Tseng H-E, Finney B, Monk B, Dibble H, Quilliam S, Warburton D, Galietta LJ, Kemp PJ, Riccardi D (2016) The extracellular calcium-sensing receptor regulates human fetal lung development via CFTR. Sci Rep 6:21975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Larson JE, Delcarpio JB, Farberman MM, Morrow SL, Cohen JC (2000) CFTR modulates lung secretory cell proliferation and differentiation. Am J Physiol Lung Cell Mol Physiol 279(2):L333–L341

    CAS  PubMed  Google Scholar 

  54. Folkesson HG, Norlin A, Baines DL (1998) Salt and water transport across the alveolar epithelium in the develo** lung: correlations between function and recent molecular biology advances (Review). Int J Mol Med 2(5):515–531

    CAS  PubMed  Google Scholar 

  55. Harding R, Hooper SB (1996) Regulation of lung expansion and lung growth before birth. J Appl Physiol 81(1):209–224

    CAS  PubMed  Google Scholar 

  56. Dickson KA, Harding R (1991) Fetal breathing and pressures in the trachea and amniotic sac during oligohydramnios in sheep. J Appl Physiol 70(1):293–299

    CAS  PubMed  Google Scholar 

  57. Mailleux AA, Kelly R, Veltmaat JM, De Langhe SP, Zaffran S, Thiery JP, Bellusci S (2005) Fgf10 expression identifies parabronchial smooth muscle cell progenitors and is required for their entry into the smooth muscle cell lineage. Dev Camb Engl 132(9):2157–2166

    CAS  Google Scholar 

  58. Low RB, White SL (1998) Lung smooth muscle differentiation. Int J Biochem Cell Biol 30(8):869–883

    Article  CAS  PubMed  Google Scholar 

  59. Sparrow MP, Lamb JP (2003) Ontogeny of airway smooth muscle: structure, innervation, myogenesis and function in the fetal lung. Respir Physiol Neurobiol 137(2–3):361–372

    Article  PubMed  Google Scholar 

  60. Lewis M (1924) Spontaneous rhythmical contraction of the muscles of the bronchial tubes and air sacs of the chick embryo. Am J Physiol 68:385–388

    Google Scholar 

  61. McCray PB (1993) Spontaneous contractility of human fetal airway smooth muscle. Am J Respir Cell Mol Biol 8(5):573–580

    Article  CAS  PubMed  Google Scholar 

  62. Pandya HC, Innes J, Hodge R, Bustani P, Silverman M, Kotecha S (2006) Spontaneous contraction of pseudoglandular-stage human airspaces is associated with the presence of smooth muscle-alpha-actin and smooth muscle-specific myosin heavy chain in recently differentiated fetal human airway smooth muscle. Biol Neonat 89(4):211–219

    Article  CAS  Google Scholar 

  63. Nakamura KT, McCray PB (2000) Fetal airway smooth-muscle contractility and lung development. A player in the band or just someone in the audience? Am J Respir Cell Mol Biol 23(1):3–6

    Article  CAS  PubMed  Google Scholar 

  64. Mitzner W (2004) Airway smooth muscle: the appendix of the lung. Am J Respir Crit Care Med 169(7):787–790

    Article  PubMed  Google Scholar 

  65. Jesudason EC (2009) Airway smooth muscle: an architect of the lung? Thorax 64(6):541–545

    Article  CAS  PubMed  Google Scholar 

  66. George UZ, Bokka KK, Warburton D, Lubkin SR (2015) Quantifying stretch and secretion in the embryonic lung: implications for morphogenesis. Mech Dev 138:356–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yang Y, Beqaj S, Kemp P, Ariel I, Schuger L (2000) Stretch-induced alternative splicing of serum response factor promotes bronchial myogenesis and is defective in lung hypoplasia. J Clin Invest 106(11):1321–1330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Jesudason EC, Smith NP, Connell MG, Spiller DG, White MRH, Fernig DG, Losty PD (2005) Develo** rat lung has a sided pacemaker region for morphogenesis-related airway peristalsis. Am J Respir Cell Mol Biol 32(2):118–127

    Article  CAS  PubMed  Google Scholar 

  69. Schittny JC, Miserocchi G, Sparrow MP (2000) Spontaneous peristaltic airway contractions propel lung liquid through the bronchial tree of intact and fetal lung explants. Am J Respir Cell Mol Biol 23(1):11–18

    Article  CAS  PubMed  Google Scholar 

  70. Roman J (1995) Effects of calcium channel blockade on mammalian lung branching morphogenesis. Exp Lung Res 21(4):489–502

    Article  CAS  PubMed  Google Scholar 

  71. Brennan SC, Finney BA, Lazarou M, Rosser AE, Scherf C, Adriaensen D, Kemp PJ, Riccardi D (2013) Fetal calcium regulates branching morphogenesis in the develo** human and mouse lung: involvement of voltage-gated calcium channels. PLoS One 8(11):e80294

    Article  PubMed  PubMed Central  Google Scholar 

  72. Jesudason EC, Smith NP, Connell MG, Spiller DG, White MRH, Fernig DG, Losty PD (2006) Peristalsis of airway smooth muscle is developmentally regulated and uncoupled from hypoplastic lung growth. Am J Physiol Lung Cell Mol Physiol 291(4):L559–L565

    Article  CAS  PubMed  Google Scholar 

  73. Carlton DP, Cummings JJ, Chapman DL, Poulain FR, Bland RD (1992) Ion transport regulation of lung liquid secretion in foetal lambs. J Dev Physiol 17(2):99–107

    CAS  PubMed  Google Scholar 

  74. Cassin S, Gause G, Perks AM (1986) The effects of bumetanide and furosemide on lung liquid secretion in fetal sheep. Proc Soc Exp Biol Med 181(3):427–431

    Article  CAS  PubMed  Google Scholar 

  75. Thom J, Perks AM (1990) The effects of furosemide and bumetanide on lung liquid production by in vitro lungs from fetal guinea pigs. Can J Physiol Pharmacol 68(8):1131–1135

    Article  CAS  PubMed  Google Scholar 

  76. Alcorn D, Adamson TM, Lambert TF, Maloney JE, Ritchie BC, Robinson PM (1977) Morphological effects of chronic tracheal ligation and drainage in the fetal lamb lung. J Anat 123(Pt 3):649–660

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Fewell JE, Hislop AA, Kitterman JA, Johnson P (1983) Effect of tracheostomy on lung development in fetal lambs. J Appl Physiol 55(4):1103–1108

    CAS  PubMed  Google Scholar 

  78. • Ali K, Bendapudi P, Polubothu S, Andradi G, Ofuya M, Peacock J, Hickey A, Davenport M, Nicolaides K, Greenough A (2016) Congenital diaphragmatic hernia-influence of fetoscopic tracheal occlusion on outcomes and predictors of survival. Eur J Pediatr 1–6. This study demonstrated that CDH infants who underwent FETO had significantly greater morbidity than those with CDH who did not undergo FETO, but the mortality did not differ significantly between the two groups. This difference could be attributed to the severity of diaphragmatic defect, as FETO serves as a treatment for more severe cases of CDH

  79. Larson JE (2006) Improvement of pulmonary hypoplasia associated with congenital diaphragmatic hernia by in utero CFTR gene therapy. AJP Lung Cell Mol Physiol 291(1):L4–L10

    Article  CAS  Google Scholar 

  80. Kotecha S, Barbato A, Bush A, Claus F, Davenport M, Delacourt C, Deprest J, Eber E, Frenckner B, Greenough A, Nicholson AG, Antón-Pacheco JL, Midulla F (2012) Congenital diaphragmatic hernia. Eur Respir J 39(4):820–829

    Article  CAS  PubMed  Google Scholar 

  81. Terryn S, Ho A, Beauwens R, Devuyst O (2011) Fluid transport and cystogenesis in autosomal dominant polycystic kidney disease. Biochim Biophys Acta 1812(10):1314–1321

    Article  CAS  PubMed  Google Scholar 

  82. Tarantal AF, Han VK, Cochrum KC, Mok A, daSilva M, Matsell DG (2001) Fetal rhesus monkey model of obstructive renal dysplasia. Kidney Int 59(2):446–456

    Article  CAS  PubMed  Google Scholar 

  83. Winyard P, Chitty LS (2008) Dysplastic kidneys. Semin Fetal Neonatal Med 13(3):142–151

    Article  PubMed  Google Scholar 

  84. Woolf AS, Price KL, Scambler PJ, Winyard PJ (2004) Evolving concepts in human renal dysplasia. J Am Soc Nephrol JASN 15(4):998–1007

    Article  PubMed  Google Scholar 

  85. Fetterman GH, Ravitch MM, Sherman FE (1974) Cystic changes in fetal kidneys following ureteral ligation: studies by microdissection. Kidney Int 5(2):111–121

    Article  CAS  PubMed  Google Scholar 

  86. Wang GJ, Brenner-Anantharam A, Vaughan ED, Herzlinger D (2009) Antagonism of BMP4 signaling disrupts smooth muscle investment of the ureter and ureteropelvic junction. J Urol 181(1):401–407

    Article  CAS  PubMed  Google Scholar 

  87. Haraguchi R, Matsumaru D, Nakagata N, Miyagawa S, Suzuki K, Kitazawa S, Yamada G (2012) The Hedgehog Signal Induced Modulation of Bone Morphogenetic Protein Signaling: An Essential Signaling Relay for Urinary Tract Morphogenesis. Leung YF, editor. PLoS One 7(7):e42245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Caubit X, Lye CM, Martin E, Coré N, Long DA, Vola C, Jenkins D, Garratt AN, Skaer H, Woolf AS, Fasano L (2008) Teashirt 3 is necessary for ureteral smooth muscle differentiation downstream of SHH and BMP4. Dev Camb Engl 135(19):3301–3310

    CAS  Google Scholar 

  89. Bohnenpoll T, Kispert A (2014) Ureter growth and differentiation. Semin Cell Dev Biol 36:21–30

    Article  PubMed  Google Scholar 

  90. Airik R, Trowe M-O, Foik A, Farin HF, Petry M, Schuster-Gossler K, Schweizer M, Scherer G, Kist R, Kispert A (2010) Hydroureternephrosis due to loss of Sox9-regulated smooth muscle cell differentiation of the ureteric mesenchyme. Hum Mol Genet 19(24):4918–4929

    Article  CAS  PubMed  Google Scholar 

  91. Airik R (2006) Tbx18 regulates the development of the ureteral mesenchyme. J Clin Invest 116(3):663–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Tripathi P, Wang Y, Casey AM, Chen F (2012) Absence of canonical Smad signaling in ureteral and bladder mesenchyme causes ureteropelvic junction obstruction. J Am Soc Nephrol JASN 23(4):618–628

    Article  CAS  PubMed  Google Scholar 

  93. Yan J, Zhang L, Xu J, Sultana N, Hu J, Cai X, Li J, Xu P-X, Cai C-L (2014) Smad4 regulates ureteral smooth muscle cell differentiation during mouse embryogenesis. PLoS One 9(8):e104503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Miyazaki Y, Tsuchida S, Nishimura H, Pope JC, Harris RC, McKanna JM, Inagami T, Hogan BL, Fogo A, Ichikawa I (1998) Angiotensin induces the urinary peristaltic machinery during the perinatal period. J Clin Invest 102(8):1489–1497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Saxén L, Sariola H (1987) Early organogenesis of the kidney. Pediatr Nephrol Berl Ger 1(3):385–392

    Article  Google Scholar 

  96. Chang C-P, McDill BW, Neilson JR, Joist HE, Epstein JA, Crabtree GR, Chen F (2004) Calcineurin is required in urinary tract mesenchyme for the development of the pyeloureteral peristaltic machinery. J Clin Invest 113(7):1051–1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Nyirády P, Cuckow PM, Fry CH (2008) Changes to the contractile function of ureter smooth muscle after partial infravesical obstruction in fetal sheep. BJU Int 102(4):490–494

    Article  PubMed  Google Scholar 

  98. Karnak I, Atilla P, Müftüoğlu S (2012) Effect of increased intra-abdominal pressure on urinary system development in fetal rabbits. J Pediatr Urol 8(5):535–543

    Article  PubMed  Google Scholar 

  99. Li XY, Desmond ME (1991) Modulation of Na+/K+ ATPase pumps in the heart of the chick embryo influences brain expansion. Soc Neurosci Abstr 17:21.16

    Google Scholar 

  100. Gato A, Moro JA, Alonso MI, Pastor JF, Represa JJ, Barbosa E (1993) Chondroitin sulphate proteoglycan and embryonic brain enlargement in the chick. Anat Embryol (Berl) 188(1):101–106

    Article  CAS  Google Scholar 

  101. •• Gato A, Alonso MI, Martín C, Carnicero E, Moro JA, De la Mano A, Fernández JMF, Lamus F, Desmond ME (2014) Embryonic cerebrospinal fluid in brain development: neural progenitor control. Croat Med J 55(4):299–305. This paper reviews the function and composition of embryonic cerebrospinal fluid (CSF). Embryonic CSF has far more protein than adult CSF, and active secretion of chondroitin sulfate proteoglycan draws fluid into the lumen. This physical mechanism creates a positive hydrostatic pressure inside the sealed cavity against the neuroepithelial wall, to produce local growth differences

  102. Desmond ME, Jacobson AG (1977) Embryonic brain enlargement requires cerebrospinal fluid pressure. Dev Biol 57(1):188–198

    Article  CAS  PubMed  Google Scholar 

  103. Tissir F, Qu Y, Montcouquiol M, Zhou L, Komatsu K, Shi D, Fujimori T, Labeau J, Tyteca D, Courtoy P, Poumay Y, Uemura T, Goffinet AM (2010) Lack of cadherins Celsr2 and Celsr3 impairs ependymal ciliogenesis, leading to fatal hydrocephalus. Nat Neurosci 13(6):700–707

    Article  CAS  PubMed  Google Scholar 

  104. Rao Damerla R, Gabriel GC, Li Y, Klena NT, Liu X, Chen Y, Cui C, Pazour GJ, Lo CW (2014) Role of cilia in structural birth defects: insights from ciliopathy mutant mouse models. Birth Defects Res C 102(2):115–125

    Article  CAS  Google Scholar 

  105. Ibañez-Tallon I, Pagenstecher A, Fliegauf M, Olbrich H, Kispert A, Ketelsen U-P, North A, Heintz N, Omran H (2004) Dysfunction of axonemal dynein heavy chain Mdnah5 inhibits ependymal flow and reveals a novel mechanism for hydrocephalus formation. Hum Mol Genet 13(18):2133–2141

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Grants from the National Science Foundation (1537256), the University of Delaware Research Foundation (15A00870), the Delaware COBRE program from the National Institutes of Health (5P30GM110758-02), the Ralph E. Powe Junior Faculty Enhancement Award (J. P. G.) from the Oak Ridge Associated Universities, and the Basil O’Connor Starter Scholar Award (J. P. G.) from the March of Dimes Foundation (5-FY16-33).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason P. Gleghorn.

Ethics declarations

Conflict of Interest

Rachel Gilbert, Joshua Morgan, Elizabeth Marcin, and Jason Gleghorn declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Tissue Engineering and Regenerative Medicine: Organogenesis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gilbert, R.M., Morgan, J.T., Marcin, E.S. et al. Fluid Mechanics as a Driver of Tissue-Scale Mechanical Signaling in Organogenesis. Curr Pathobiol Rep 4, 199–208 (2016). https://doi.org/10.1007/s40139-016-0117-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40139-016-0117-3

Keywords

Navigation