Log in

An explicit two-stage truncated Runge–Kutta method for nonlinear stochastic differential equations

  • Original Research
  • Published:
Mathematical Sciences Aims and scope Submit manuscript

Abstract

In this paper, we construct a two-stage truncated Runge–Kutta (TSRK2) method for highly nonlinear stochastic differential equations (SDEs) with non-global Lipschitz coefficients. TSRK2 is an explicit method and includes some free parameters that can extend the accuracy of the results and stability regions. We show that this method can achieve a strong convergence rate arbitrarily close to half under local Lipschitz and Khasiminskii conditions. We study the mean square stability properties (MS-stability) of the method based on a scalar linear test equation with multiplicative noise, and the advantages of our results are highlighted by comparing them with those of the truncated Euler–Maruyama method. We also analyze the asymptotic stability properties of the method. We show that the proposed method can preserve the asymptotic stability of the original system under mild conditions. Finally, we report some numerical experiments to illustrate the effectiveness of the proposed method. As a result, we show that the new method has good properties not only in terms of practical errors but also in terms of stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Buckwar, E., Samson, A., Tamborrino, M., Tubikanec, I.: A splitting method for SDEs with locally Lipschitz drift: Illustration on the FitzHugh-Nagumo model. Appl. Numer. Math. 179, 191–220 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  2. Burrage, K., Burrage, P.M., Tian, T.: Numerical methods for strong solutions of stochastic differential equations: an overview. Proc. R. Soc. Lond. A. 460, 373–402 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Gan, S., He, Y., Wang, X.: Tamed Runge–Kutta methods for SDEs with super-linearly growing drift and diffusion coefficients. Appl. Numer. Mathe. 152, 379–402 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  4. Gillespie, D.T.: The chemical Langevin equation. J. Chem. Phys. 113(1), 297–306 (2000)

    Article  Google Scholar 

  5. Guo, Q., Liu, W., Mao, X.: A note on the partially truncated Euler–Maruyama method. Appl. Numer. Math. 130, 157–170 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Guo, Q., Liu, W., Mao, X., Yue, R.: The partially truncated Euler–Maruyama method and its stability and boundedness. Appl. Numer. Math. 115, 235–251 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Guo, Q., Liu, W., Mao, X., Yue, R.: The truncated Milstein method for stochastic differential equations with commutative noise. J. Comput. Appl. Math. 338, 298–310 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Haghighi, A., Hosseini, S.M., Rößler, A.: Diagonally drift-implicit Runge–Kutta methods of strong order one for stiff stochastic differential systems. J. Comput. Appl. Math. 293, 82–93 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Higham, D.J., Mao, X., Stuart, A.M.: Strong convergence of Euler-type methods for nonlinear stochastic differential equations. SIAM. J. Numer. Anal. 40(3), 1041–1063 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hu, L., Li, X., Mao, X.: Convergence rate and stability of the truncated Euler–Maruyama method for stochastic differential equations. J. Comput. Appl. Math. 337, 274–289 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hutzenthaler, M., Jentzen, A., Kloeden, P.E.: Strong and weak divergence in finite time of Euler’s method for stochastic differential equations with non-globally Lipschitz continuous coefficients. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 467, 1563–1576 (2011)

    MathSciNet  MATH  Google Scholar 

  12. Hutzenthaler, M., Jentzen, A., Kloeden, P.E.: Strong convergence of an explicit numerical method for SDEs with non-globally Lipschitz continuous coefficients. Ann. Appl. Probab. 22(4), 1611–1641 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  14. Komori, Y., Burrage, K.: Strong first order S-ROCK methods for stochastic differential equations. J. Comput. Appl. Math. 242, 261–274 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lewis, A.L.: Option Valuation Under Stochastic Volatility: With Mathematica Code. Finance Press, California (2000)

    MATH  Google Scholar 

  16. Li, X., Yin, G.: Explicit Milstein schemes with truncation for nonlinear stochastic differential equations: convergence and its rate. J. Comput. Appl. Math. 374, 112,771 (2020)

    Article  MathSciNet  Google Scholar 

  17. Liu, W., Mao, X.: Strong convergence of the stopped Euler–Maruyama method for nonlinear stochastic differential equations. Appl. Math. Comput. 223, 389–400 (2013)

    MathSciNet  MATH  Google Scholar 

  18. Mao, X.: A note on the LaSalle-type theorems for stochastic differential delay equations. J. Math. Anal. Appl. 268(1), 125–142 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mao, X.: Stochastic Differential Equations and Applications, 2nd edn. Horwood, Chichester (2007)

    MATH  Google Scholar 

  20. Mao, X.: The truncated Euler–Maruyama method for stochastic differential equations. J. Comput. Appl. Math. 290, 370–384 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mao, X.: Convergence rates of the truncated Euler–Maruyama method for stochastic differential equations. J. Comput. Appl. Math. 296, 362–375 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mao, X., Szpruch, L.: Strong convergence and stability of implicit numerical methods for stochastic differential equations with non-globally Lipschitz continuous coefficients. J. Comput. Appl. Math. 238, 14–28 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mao, X., Yuan, C.: Stochastic Differential Equations with Markovian Switching. Imperial College Press, London (2006)

    Book  MATH  Google Scholar 

  24. Milstein, G.N.: Numerical Integration of Stochastic Differential Equations. Kluwer Academic, Dordrecht (1995)

    Book  Google Scholar 

  25. Milstein, G.N., Tretyakov, M.V.: Stochastic Numerics for Mathematical Physics. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  26. Nouri, K.: Improving split-step forward methods by ODE solver for stiff stochastic differential equations. Math. Sci. 16(1), 51–57 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nouri, K., Ranjbar, H., Torkzadeh, L.: Improved Euler–Maruyama method for numerical solution of the Itô stochastic differential systems by composite previous-current-step idea. Mediterr. J. Math. 15(3), 140 (2018)

    Article  MATH  Google Scholar 

  28. Øksendal, B.: Stochastic Differential Equations. An Introduction With Applications. In: Universitext, 6th edn. Springer-Verlag, Berlin (2003)

  29. Rößler, A.: Runge–Kutta methods for the strong approximation of solutions of stochastic differential equations. SIAM J. Math. Anal. 48(3), 922–952 (2010)

    MathSciNet  MATH  Google Scholar 

  30. Sabanis, S.: A note on tamed Euler approximations. Electron. Commun. Probab. 18, 1–10 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Tian, T., Burrage, K.: Implicit Taylor methods for stiff stochastic differential equations. Appl. Numer. Math. 38(1), 167–185 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  32. Torkzadeh, L.: Mean-square convergence analysis of the semi-implicit scheme for stochastic differential equations driven by the Wiener processes. Math. Sci. (2021). https://doi.org/10.1007/s40096-021-00440-2

    Article  Google Scholar 

  33. Tretyakov, M.V., Zhang, Z.: A fundamental mean-square convergence theorem for SDEs with locally Lipschitz coefficients and its applications. SIAM J. Numer. Anal. 51(6), 3135–3162 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang, X., Gan, S.: The tamed Milstein method for commutative stochastic differential equations with non-globally Lipschitz continuous coefficients. J. Differ. Equ. Appl. 19(3), 466–490 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Yang, H., Huang, J.: Convergence and stability of modified partially truncated Euler–Maruyama method for nonlinear stochastic differential equations with hölder continuous diffusion coefficient. J. Comput. Appl. Math. 404, 113, 895 (2022)

    Article  MATH  Google Scholar 

  36. Yang, H., Wu, F., Kloeden, P.E., Mao, X.: The truncated Euler–Maruyama method for stochastic differential equations with hölder diffusion coefficients. J. Comput. Appl. Math. 366, 112, 379 (2020)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank the reviewers for their constructive comments, which helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Haghighi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haghighi, A. An explicit two-stage truncated Runge–Kutta method for nonlinear stochastic differential equations. Math Sci (2023). https://doi.org/10.1007/s40096-023-00508-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40096-023-00508-1

Keywords

Mathematics Subject Classification

Navigation