Log in

Using deep learning to predict radiation pneumonitis in patients treated with stereotactic body radiotherapy (SBRT) for pulmonary nodules: preliminary results

  • Original Paper - Cross-Disciplinary Physics and Related Areas of Science and Technology
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

This study aimed to develop a predictive model using clinical, dosimetric, and radiomic features for radiation-induced pneumonitis (RP) after lung stereotactic body radiation therapy (SBRT). We retrospectively analyzed the clinical data of 153 patients who underwent SBRT for lung nodules between 2010 and 2019. A total of 3,350 radiomic computed tomography (CT) features of radiotherapy simulation (shape, intensity, texture, and log filters) were extracted. Among them, 30 factors were selected through Pearson’s correlation analysis and subjected to analysis. A proposed lung toxicity prediction model was developed using a deep neural network algorithm. The programming language used was Python. The data were divided into a training set (70% of data) and a test/validation set (30% of data). We adjusted the original data by oversampling to correct the uneven sample distribution to balance the data set. The Talos library was used in this study for hyperparameter determination and the model with the highest accuracy was selected. The Talos library provided the RP prediction model with the highest accuracy of 94.8%. The area under the curve of the receiver operating characteristics curve was 0.90, which was relatively fair. It showed relatively high accuracy in the RP prediction model based on the clinical, dosimetric, and radiomic factors of patients who received SBRT for lung nodules. A further study using more cases from other medical centers is being planned for external validation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S.W. Lee, E.K. Choi, H.J. Park, S.D. Ahn, J.H. Kim, K.J. Kim, S.M. Yoon, Y.S. Kim, B.Y. Yi, Stereotactic body frame based fractionated radiosurgery on consecutive days for primary or metastatic tumors in the lung. Lung Cancer (Amst Netherlands) 40, 309 (2003). https://doi.org/10.1016/s0169-5002(03)00040-0

    Article  Google Scholar 

  2. G.M. Videtic, C.A. Reddy, L. Sorenson, A prospective study of quality of life including fatigue and pulmonary function after stereotactic body radiotherapy for medically inoperable early-stage lung cancer. Support Care Cancer 21, 211 (2013). https://doi.org/10.1007/s00520-012-1513-9

    Article  Google Scholar 

  3. H. Onishi, H. Shirato, Y. Nagata, M. Hiraoka, M. Fu**o, K. Gomi, K. Karasawa, K. Hayakawa, Y. Niibe, Y. Takai, T. Kimura, A. Takeda, A. Ouchi, M. Hareyama, M. Kokubo, T. Kozuka, T. Arimoto, R. Hara, J. Itami, T. Araki, Stereotactic body radiotherapy (SBRT) for operable stage I non-small-cell lung cancer: can SBRT be comparable to surgery? Int. J. Radiat. Oncol. Biol. Phys. 81, 1352 (2011). https://doi.org/10.1016/j.ijrobp.2009.07.1751

    Article  Google Scholar 

  4. N.E. Verstegen, J.W. Oosterhuis, D.A. Palma, G. Rodrigues, F.J. Lagerwaard, A. van der Elst, R. Mollema, W.F. van Tets, A. Warner, J.J. Joosten, M.I. Amir, C.J. Haasbeek, E.F. Smit, B.J. Slotman, S. Senan, Stage I-II non-small-cell lung cancer treated using either stereotactic ablative radiotherapy (SABR) or lobectomy by video-assisted thoracoscopic surgery (VATS): outcomes of a propensity score-matched analysis. Ann. Oncol. 24, 1543 (2013). https://doi.org/10.1093/annonc/mdt026

    Article  Google Scholar 

  5. G.M. Videtic, C. Hu, A.K. Singh, J.Y. Chang, W. Parker, K.R. Olivier, S.E. Schild, R. Komaki, J.J. Urbanic, R.D. Timmerman, H. Choy, A randomized phase 2 study comparing 2 stereotactic body radiation therapy schedules for medically inoperable patients with stage I peripheral non-small cell lung cancer: NRG oncology RTOG 0915 (NCCTG N0927). Int. J. Radiat. Oncol. Biol. Phys. 93, 757 (2015). https://doi.org/10.1016/j.ijrobp.2015.07.2260

    Article  Google Scholar 

  6. M. Guckenberger, T. Krieger, A. Richter, K. Baier, J. Wilbert, R.A. Sweeney, M. Flentje, Potential of image-guidance, gating and real-time tracking to improve accuracy in pulmonary stereotactic body radiotherapy. Radiother. Oncol. 91, 288 (2009). https://doi.org/10.1016/j.radonc.2008.08.010

    Article  Google Scholar 

  7. R.A. Sweeney, B. Seubert, S. Stark, V. Homann, G. Müller, M. Flentje, M. Guckenberger, Accuracy and inter-observer variability of 3D versus 4D cone-beam CT based image-guidance in SBRT for lung tumors. Radiat. Oncol. 7, 81 (2012). https://doi.org/10.1186/1748-717x-7-81

    Article  Google Scholar 

  8. E.M. Harder, H.S. Park, Z.J. Chen, R.H. Decker, Pulmonary dose-volume predictors of radiation pneumonitis following stereotactic body radiation therapy. Pract. Radiat. Oncol. 6, e353 (2016). https://doi.org/10.1016/j.prro.2016.01.015

    Article  Google Scholar 

  9. G. Valdes, T.D. Solberg, M. Heskel, L. Ungar, C.B. Simone 2nd., Using machine learning to predict radiation pneumonitis in patients with stage I non-small cell lung cancer treated with stereotactic body radiation therapy. Phys. Med. Biol. 61, 6105 (2016). https://doi.org/10.1088/0031-9155/61/16/6105

    Article  Google Scholar 

  10. M. Yakar, D. Etiz, M. Metintas, G. Ak, O. Celik, Prediction of radiation pneumonitis with machine learning in stage III lung cancer: a pilot study. Technol. Cancer Res. Treat. 20, 15330338211016372 (2021). https://doi.org/10.1177/15330338211016373

    Article  Google Scholar 

  11. A.J. Hope, P.E. Lindsay, I. El Naqa, J.R. Alaly, M. Vicic, J.D. Bradley, J.O. Deasy, Modeling radiation pneumonitis risk with clinical, dosimetric, and spatial parameters. Int. J. Radiat. Oncol. Biol. Phys. 65, 112 (2006). https://doi.org/10.1016/j.ijrobp.2005.11.046

    Article  Google Scholar 

  12. R.J. Klement, M. Allgäuer, S. Appold, K. Dieckmann, I. Ernst, U. Ganswindt, R. Holy, U. Nestle, M. Nevinny-Stickel, S. Semrau, F. Sterzing, A. Wittig, N. Andratschke, M. Guckenberger, Support vector machine-based prediction of local tumor control after stereotactic body radiation therapy for early-stage non-small cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 88, 732 (2014). https://doi.org/10.1016/j.ijrobp.2013.11.216

    Article  Google Scholar 

  13. T. Adachi, M. Nakamura, T. Shintani, T. Mitsuyoshi, R. Kakino, T. Ogata, T. Ono, H. Tanabe, M. Kokubo, T. Sakamoto, Y. Matsuo, T. Mizowaki, Multi-institutional dose-segmented dosiomic analysis for predicting radiation pneumonitis after lung stereotactic body radiation therapy. Med. Phys. 48, 1781 (2021). https://doi.org/10.1002/mp.14769

    Article  Google Scholar 

  14. S.P. Krafft, A. Rao, F. Stingo, T.M. Briere, L.E. Court, Z. Liao, M.K. Martel, The utility of quantitative CT radiomics features for improved prediction of radiation pneumonitis. Med. Phys. 45, 5317 (2018). https://doi.org/10.1002/mp.13150

    Article  Google Scholar 

  15. H. Kim, C.M. Park, J.M. Goo, J.E. Wildberger, H.U. Kauczor, Quantitative computed tomography imaging biomarkers in the diagnosis and management of lung cancer. Invest. Radiol. 50, 571 (2015). https://doi.org/10.1097/rli.0000000000000152

    Article  Google Scholar 

  16. D. De Ruysscher, H. Sharifi, G. Defraene, S.L. Kerns, M. Christiaens, K. De Ruyck, S. Peeters, J. Vansteenkiste, R. Jeraj, F. Van Den Heuvel, W. van Elmpt, Quantification of radiation-induced lung damage with CT scans: the possible benefit for radiogenomics. Acta Oncol. 52, 1405 (2013). https://doi.org/10.3109/0284186x.2013.813074

    Article  Google Scholar 

  17. D.A. Palma, J. van Sörnsen, W.F. de Koste, A. Verbakel, S.S. Vincent, Lung density changes after stereotactic radiotherapy: a quantitative analysis in 50 patients. Int. J. Radiat. Oncol. Biol. Phys. 81, 974 (2011). https://doi.org/10.1016/j.ijrobp.2010.07.025

    Article  Google Scholar 

  18. I. Kyas, H. Hof, J. Debus, W. Schlegel, C.P. Karger, Prediction of radiation-induced changes in the lung after stereotactic body radiation therapy of non-small-cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 67, 768 (2007). https://doi.org/10.1016/j.ijrobp.2006.08.066

    Article  Google Scholar 

  19. G. Defraene, W. van Elmpt, W. Crijns, P. Slagmolen, D. De Ruysscher, CT characteristics allow identification of patient-specific susceptibility for radiation-induced lung damage. Radiother. Oncol. 117, 29 (2015). https://doi.org/10.1016/j.radonc.2015.07.033

    Article  Google Scholar 

  20. E. Huynh, T.P. Coroller, V. Narayan, V. Agrawal, Y. Hou, J. Romano, I. Franco, R.H. Mak, H.J. Aerts, CT-based radiomic analysis of stereotactic body radiation therapy patients with lung cancer. Radiother. Oncol. 120, 258 (2016). https://doi.org/10.1016/j.radonc.2016.05.024

    Article  Google Scholar 

  21. B. Liang, Y. Tian, X. Chen, H. Yan, L. Yan, T. Zhang, Z. Zhou, L. Wang, J. Dai, Prediction of radiation pneumonitis with dose distribution: a convolutional neural network (CNN) based model. Front. Oncol. 9, 1500 (2019). https://doi.org/10.3389/fonc.2019.01500

    Article  Google Scholar 

  22. X. Zhen, J. Chen, Z. Zhong, B. Hrycushko, L. Zhou, S. Jiang, K. Albuquerque, X. Gu, Deep convolutional neural network with transfer learning for rectum toxicity prediction in cervical cancer radiotherapy: a feasibility study. Phys. Med. Biol. 62, 8246 (2017). https://doi.org/10.1088/1361-6560/aa8d09

    Article  Google Scholar 

  23. B. Ibragimov, D. Toesca, D. Chang, Y. Yuan, A. Koong, L. **ng, Development of deep neural network for individualized hepatobiliary toxicity prediction after liver SBRT. Med. Phys. 45, 4763 (2018). https://doi.org/10.1002/mp.13122

    Article  Google Scholar 

  24. M. D. Anderson, Cancer center head and neck quantitative imaging working group, investigation of radiomic signatures for local recurrence using primary tumor texture analysis in oropharyngeal head and neck cancer patients, Sci. Rep. 8, 1524 (2018). https://doi.org/10.1038/s41598-017-14687-0

  25. S.P. Shayesteh, A. Alikhassi, F. Farhan, R. Ghalehtaki, M. Soltanabadi, P. Haddad, A. Bitarafan-Rajabi, Prediction of response to neoadjuvant chemoradiotherapy by mri-based machine learning texture analysis in rectal cancer patients. J Gastrointest Cancer 51, 601 (2020). https://doi.org/10.1007/s12029-019-00291-0

    Article  Google Scholar 

  26. L. Lu, S. H. Sun, H. Yang, L. E, P. Guo, L. H. Schwartz, B. Zhao, Radiomics prediction of EGFR status in lung cancer-our experience in using multiple feature extractors and the cancer imaging archive data, tomography 6, 223 (2020). https://doi.org/10.18383/j.tom.2020.00017

  27. F. Chollet, Keras: the python deep learning library, astrophysics source code library, ascl: 1806.022 (2018)

  28. 2022 GitHub Inc., Hyperparameter Optimization for TensorFlow, Keras and PyTorch, http://github.com/autonomio/talos, Accessed 21 January 2022.

  29. S. Yamaguchi, T. Ohguri, S. Ide, T. Aoki, H. Imada, K. Yahara, H. Narisada, Y. Korogi, Stereotactic body radiotherapy for lung tumors in patients with subclinical interstitial lung disease: the potential risk of extensive radiation pneumonitis, Lung cancer (Amst, Netherlands) 82, 260 (2013). https://doi.org/10.1016/j.lungcan.2013.08.024

  30. N. Ueki, Y. Matsuo, Y. Togashi, T. Kubo, K. Shibuya, Y. Iizuka, T. Mizowaki, K. Togashi, M. Mishima, M. Hiraoka, Impact of pretreatment interstitial lung disease on radiation pneumonitis and survival after stereotactic body radiation therapy for lung cancer. J. Thora. Oncol. 10, 116 (2015). https://doi.org/10.1097/jto.0000000000000359

    Article  Google Scholar 

  31. T. Yoshitake, Y. Shioyama, K. Asai, K. Nakamura, T. Sasaki, S. Ohga, T. Kamitani, T. Yamaguchi, K. Ohshima, K. Matsumoto, S. Kawanami, H. Honda, Impact of interstitial changes on radiation pneumonitis after stereotactic body radiation therapy for lung cancer. Anticancer Res. 35, 4909 (2015)

    Google Scholar 

  32. T.A. Hirose, H. Arimura, K. Ninomiya, T. Yoshitake, J.I. Fukunaga, Y. Shioyama, Radiomic prediction of radiation pneumonitis on pretreatment planning computed tomography images prior to lung cancer stereotactic body radiation therapy. Sci Rep 10, 20424 (2020). https://doi.org/10.1038/s41598-020-77552-7

    Article  Google Scholar 

  33. H. Yamashita, S. Kobayashi-Shibata, A. Terahara, K. Okuma, A. Haga, R. Wakui, K. Ohtomo, K. Nakagawa, Prescreening based on the presence of CT-scan abnormalities and biomarkers (KL-6 and SP-D) may reduce severe radiation pneumonitis after stereotactic radiotherapy. Radiat Oncol 5, 32 (2010). https://doi.org/10.1186/1748-717x-5-32

    Article  Google Scholar 

  34. N. Nakajima, Y. Sugawara, M. Kataoka, Y. Hamamoto, T. Ochi, S. Sakai, T. Takahashi, M. Kajihara, N. Teramoto, M. Yamashita, T. Mochizuki, Differentiation of tumor recurrence from radiation-induced pulmonary fibrosis after stereotactic ablative radiotherapy for lung cancer: characterization of 18F-FDG PET/CT findings. Ann Nucl Med 27, 261 (2013). https://doi.org/10.1007/s12149-012-0682-4

    Article  Google Scholar 

  35. A. Cunliffe, S.G. Armato 3rd., R. Castillo, N. Pham, T. Guerrero, H.A. Al-Hallaq, Lung texture in serial thoracic computed tomography scans: correlation of radiomics-based features with radiation therapy dose and radiation pneumonitis development. Int. J. Radiat. Oncol. Biol. Phys. 91, 1048 (2015). https://doi.org/10.1016/j.ijrobp.2014.11.030

    Article  Google Scholar 

  36. A. Pella, R. Cambria, M. Riboldi, B.A. Jereczek-Fossa, C. Fodor, D. Zerini, A.E. Torshabi, F. Cattani, C. Garibaldi, G. Pedroli, G. Baroni, R. Orecchia, Use of machine learning methods for prediction of acute toxicity in organs at risk following prostate radiotherapy. Med. Phys. 38, 2859 (2011). https://doi.org/10.1118/1.3582947

    Article  Google Scholar 

  37. H. Abdollahi, S. Mostafaei, S. Cheraghi, I. Shiri, S. Rabi Mahdavi, A. Kazemnejad, Cochlea CT radiomics predicts chemoradiotherapy induced sensorineural hearing loss in head and neck cancer patients: a machine learning and multi-variable modelling study, Phys Med 45, 192 (2018). https://doi.org/10.1016/j.ejmp.2017.10.008

  38. S. Sharma, M. Parmar, Heart diseases prediction using deep learning neural network model, Int. J. Innov. Technol. Explor. Eng. (IJITEE) 9 (2020)

  39. D. Gunning, Explainable artificial intelligence, Defense Advanced Research Projects Agency (DARPA), 2 (2017)

  40. L. H. Gilpin, D. Bau, B. Z. Yuan, A. Bajwa, M. Specter, L. Kagal, in 2018 IEEE 5th International Conference on data science and advanced analytics (DSAA), 80 (2018)

Download references

Acknowledgements

This study was supported by the Research Fund of Seoul St. Mary’s Hospital, The Catholic University of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-nam Kang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, K.H., Seol, Y., Kang, Yn. et al. Using deep learning to predict radiation pneumonitis in patients treated with stereotactic body radiotherapy (SBRT) for pulmonary nodules: preliminary results. J. Korean Phys. Soc. 81, 460–470 (2022). https://doi.org/10.1007/s40042-022-00543-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-022-00543-6

Keywords

Navigation