Log in

Detection of low-frequency gravitational waves

  • Review
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

For understanding the universe from gravitational wave astronomy, multi-wavelength observation will be important, analogous to EM astronomy advanced over the preceding decades. Multi-wavelength observations will be enabled with a variety of detection methods, including ground-based or space-borne interferometers and pulsar timing arrays. In particular, space experiments will open up a new range of frequencies, 10–7–10–1 Hz, for the observation of gravitational waves. They will allow us to study various gravitational wave physics in the unexplored parameter space of strain and frequency and will benefit the field, producing complementary results to further our knowledge on gravitational waves. We review briefly the detection of low-frequency gravitational waves, citing detailed references.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. J. Weber, Phys. Rev. 117, 306 (1960)

    Article  ADS  MathSciNet  Google Scholar 

  2. P. Astone et al., Phys. Rev. D 82, 022003 (2010)

    Article  ADS  Google Scholar 

  3. M.E. Gertsenshtein, V.I. Pustovoit, Sov. Phys. JETP 16, 433 (1962)

    ADS  Google Scholar 

  4. G.E. Moss, L.R. Miller, R.L. Forward, Appl. Opt. 10, 2495 (1971)

    Article  ADS  Google Scholar 

  5. B.P. Abbott et al., Phys. Rev. Lett. 116, 061102 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  6. B.P. Abbott et al., Astrophys. J. Lett. 848, L12 (2017)

    Article  ADS  Google Scholar 

  7. B.P. Abbott et al., Phys. Rev. Lett. 119, 161101 (2017)

    Article  ADS  Google Scholar 

  8. A. Abramovici et al., Science 256, 325–333 (1992)

    Article  ADS  Google Scholar 

  9. A. Brillet, A. Giazotto et al., Virgo Project Technical Report No. VIR-0517A-15, 1989

  10. T. Akutsu et al., KAGRA: 25 generation interferometric gravitational wave detector. Nat. Astron. 3, 35–40 (2019)

    Article  ADS  Google Scholar 

  11. D. Reitzer et al., ar**v:1907.04833 (2019)

  12. Stefan Hild, Simon Chelkowski and Andreas Freise, ar**v:0810.0604 (2008)

  13. K. Danzmann, LISA Laser Interferometer Space Antenna–A proposal in response to the ESA call for L3 mission concepts. Albert Einstein Inst. Hanover, Leibniz Univ. Hanover, Max Planck Inst. Gravitational Phys., Hannover, Germany, Tech. Rep (2017)

  14. K. H. Danzmann et al., LISA Proposal for a Laser Interferometric Gravitational Wave Detector in Space, report of Max-Planck-Institut fuer Quantenoptik (1993).

  15. S. Kawamura et al., Class. Quant. Gravity 28, 094011 (2011)

    Article  ADS  Google Scholar 

  16. J. Crowder, N.J. Cornish, Phys. Rev. D 72, 083005 (2005)

    Article  ADS  Google Scholar 

  17. M. Armado et al., Phys. Rev. Lett. 116, 231101 (2016)

    Article  ADS  Google Scholar 

  18. M. Armado et al., Phys. Rev. Lett. 120, 061101 (2018)

    Article  ADS  Google Scholar 

  19. R.M. Shannon et al., Science 342, 334–337 (2013)

    Article  ADS  Google Scholar 

  20. S. Detweiler, Astrophys. J. 234, 1100–1104 (1979)

    Article  ADS  Google Scholar 

  21. J.P.W. Verbiest, MNRAS 458(2), 1267–1288 (2016)

    Article  ADS  Google Scholar 

  22. B.B.P. Perera, MNRAS 490(4), 4666–4687 (2019)

    Article  ADS  Google Scholar 

  23. R.S. Foster, D.C. Backer, Astrophys. J. 261, 300–308 (1990)

    Article  ADS  Google Scholar 

  24. D.J. Reardon et al., MNRAS 455(2), 1751–1769 (2016)

    Article  ADS  Google Scholar 

  25. Z. Arzoumanian et al., Am. Astron. Soc. 235(2), 37 (2018)

    Google Scholar 

  26. G. Desvignes et al., MNRAS 458(3), 3341–3380 (2016)

    Article  ADS  Google Scholar 

  27. P.A.R. Ade et al., The keck array and BICEP2 collaborations. Phys. Rev. Lett. 121, 221301 (2018)

    Article  ADS  Google Scholar 

  28. P.A.R. Ade et al., Astrophy. J. 794, 171 (2014). (The POLARBEAR collaboration)

    Article  ADS  Google Scholar 

  29. E. Calabrese et al., Phys. Rev. D 95, 063525 (2017)

    Article  ADS  Google Scholar 

  30. W.L.K. Wu et al., Astrophys. J. 884, 70 (2019)

    Article  ADS  Google Scholar 

  31. P.A.R. Ade et al., AAP 586, A141 (2016). (Planck Collaboration)

    Article  Google Scholar 

  32. J.W. Armstrong, Living Rev. Relativ. 9, 1 (2006)

    Article  ADS  Google Scholar 

  33. S. Kolkowitz, I. Pikovski, N. Langellier, M.D. Lukin, R.L. Walsworth, J. Ye, Phys. Rev. D 94, 124043 (2016)

    Article  ADS  Google Scholar 

  34. S. Dimopoulos et al., Phys. Lett. B 678, 37 (2009)

    Article  ADS  Google Scholar 

  35. J. Magorrian et al., Astron. J. 115, 2285 (1998)

    Article  ADS  Google Scholar 

  36. D. Merritt, L. Ferrarese, ApJ 547, 140 (2001)

    Article  ADS  Google Scholar 

  37. S. Tremaine et al., ApJ 574, 740 (2002)

    Article  ADS  Google Scholar 

  38. L. Ferrarese, R.W. Pogge, B.M. Peterson, D. Merritt, A. Wandel, C.L. Joseph, ApJ 555, L79 (2001)

    Article  ADS  Google Scholar 

  39. A. Laor, ApJ 553, 677 (2001)

    Article  ADS  Google Scholar 

  40. E. Ba-nados et al., Nature 553, 473–476 (2018)

    Article  ADS  Google Scholar 

  41. J. S. B. Wyithe, A. Loeb, astro-ph/0206154 (2002)

  42. G. A. Shields, K. Gebhardt, S. Salviander, B. Wills, B. **e, M. Brotherton, J. Yuan, M. Dietrich, astro-ph/0210050 (2002).

  43. P. Amaro-Seoane, M. Preto, Class. Quant Gravity 28, 094017 (2011)

    Article  ADS  Google Scholar 

  44. D. Aharon, B.P. Hagai, Astrophys. J. Lett. 830, L1 (2016)

    Article  ADS  Google Scholar 

  45. L.P. Grishchuk, JETP 40, 409–415 (1974)

    ADS  Google Scholar 

  46. L.P. Grishchuk, JETP Lett. 23, 293 (1976)

    ADS  Google Scholar 

  47. C. L¨ammerzahl, C. W. F. Everitt and F. W. Hehl, Lecture Notes in physics, vol. 562, 167, (Springer Science & Business Media, 2001).

  48. L. P. Grishchuk, Topical and Timely Reviews on Astrophysics (Ed. Mason, J.) p281. (Berlin: Springer, 2004).

  49. B.P. Abbott et al., Phys. Rev. D 100, 061101 (2019)

    Article  ADS  Google Scholar 

  50. B.P. Abbott et al., Phys. Rev. Lett. 120, 091101 (2018)

    Article  ADS  Google Scholar 

  51. M.G. Haehnelt, MNRAS 269, 199 (1994)

    Article  ADS  Google Scholar 

  52. S. A. Hughes, S. Marka, P. L. Bender and C. J. Hogan, astro-ph/0110349 (2001).

  53. V.M. Kaspi, J.H. Taylor, M.F. Ryba, ApJ 428, 713 (1994)

    Article  ADS  Google Scholar 

  54. S.E. Thorsett, R.J. Dewey, Phys. Rev. D 53, 3468 (1996)

    Article  ADS  Google Scholar 

  55. A. N. Lommen, astro-ph/0208572 (2002).

  56. K. H. Danzmann et al., report of Max-Planck-Institut fuer Quantenoptik (1993).

  57. T. A. Prince et al., list.caltech.edu/mission_documents (2009)

  58. O. Jennrich, Class. Quant. Grav. 26, 153001 (2009)

    Article  ADS  Google Scholar 

  59. SAO/NASA Astrophysics Data System 2012 papers mentioning LISA in the abstract tinyurl.com/lisa-ads.

  60. Pau Amaro-Seoane et al., ar**v:1202.0839 (2012).

  61. I.H. Park et al., ar**v:1906.0618v2 (2019).

  62. C.J. Moore, R.H. Cole and C.P.L. Berry, Class. Quant. Gravity 32, 015014 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgment

We acknowledge the support from the National Research Foundation (NRF) of Korea: NRF-2021R1A2B5B03002645 and NRF-2017K1A4A3015188.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. H. Park.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, I.H. Detection of low-frequency gravitational waves. J. Korean Phys. Soc. 78, 886–891 (2021). https://doi.org/10.1007/s40042-021-00118-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00118-x

Keywords

Navigation