Log in

Iron Ore Characterization Techniques in Mineral Processing

  • REVIEW PAPER
  • Published:
Journal of The Institution of Engineers (India): Series D Aims and scope Submit manuscript

Abstract

While iron is a pivotal metal that is exploited commercially, its extraction from ores, subsequent processing and purification follows a series of steps, and material characterization in terms of physical, chemical and mineralogical features and behavior is imperative at each stage. Some characterization tests rely solely on physical measurements, while others are based on optical and chemical data. Thus, employing these techniques is critical for gaining a complete understanding of ore characteristics such as physical, chemical, textural, mineralogical, granulometric, etc., in order to forecast its behavior during processing operations, and as a result, to optimize the process. Consequently, this review highlights some of the primary characterization tests such as SEM (Scanning Electron Microscopy), XRD (X-ray Diffraction), and FTIR (Fourier Transform Infrared spectroscopy) used in iron ore processing and their significance in analyzing various properties such as elemental composition, porosity, mineral association, and liberation, among others, while also introducing additional and emerging techniques used in iron ore mineralogical assays and processing operations. Characterization tests are presented used not just for high-grade iron ores, but also for low-grade discard materials such as fines and tailings. While optical microscopy and SEM aid in micro-morphological examinations, and XRD, FTIR, and other techniques aid in detailed chemical investigations, TGA and BET assist in physical characterization. A combination of these techniques may be deemed ideal for gaining a thorough understanding of ore characteristics as well as ore processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.K. Dwari, D.S. Rao, P.S.R. Reddy, Mineralogical and beneficiation studies of a low grade iron ore sample. J. Inst. Eng. Ser. D 95(2), 115–123 (2014). https://doi.org/10.1007/s40033-014-0045-5

    Article  Google Scholar 

  2. M. Manjunatha et al., XRD, internal field-NMR and Mössbauer spectroscopy study of composition, structure and magnetic properties of iron oxide phases in iron ores. J. Mater. Res. Technol. 8(2), 2192–2200 (2019). https://doi.org/10.1016/j.jmrt.2019.01.022

    Article  MathSciNet  Google Scholar 

  3. O.J. Kolawole, A.A. Akanni, B.S. Ameenullahi, A.A. Adediran, Preliminary characterisation of iron ores for steel making processes. Proc. Manuf. 35, 1123–1128 (2019). https://doi.org/10.1016/j.promfg.2019.07.020

    Article  Google Scholar 

  4. S. Patra, A. Pattanaik, V. Rayasam, Characterisation of low-grade Barsua iron ore fines and identification of possible beneficiation strategies. Can. Metall. Q. 58(1), 28–45 (2019). https://doi.org/10.1080/00084433.2018.1516598

    Article  Google Scholar 

  5. A.B. Kotta, S.K. Karak, M. Kumar, Chemical, physical, thermal, textural and mineralogical studies of natural iron ores from Odisha and Chhattisgarh regions, India. J. Cent. South Univ. 25(12), 2857–2870 (2018). https://doi.org/10.1007/s11771-018-3958-6

    Article  Google Scholar 

  6. I.D. Delbem, R. Galéry, P.R.G. Brandão, A.E.C. Peres, Semi-automated iron ore characterisation based on optical microscope analysis: Quartz/resin classification. Miner. Eng. 82, 2–13 (2015). https://doi.org/10.1016/j.mineng.2015.07.021

    Article  Google Scholar 

  7. O.D.F.M. Gomes, J.C.A. Iglesias, S. Paciornik, M.B. Vieira, Classification of hematite types in iron ores through circularly polarized light microscopy and image analysis. Miner. Eng. 52, 191–197 (2013). https://doi.org/10.1016/j.mineng.2013.07.019

    Article  Google Scholar 

  8. T. Chaudhuri, R. Mazumder, M. Arima, Petrography and geochemistry of Mesoarchaean komatiites from the eastern Iron Ore belt, Singhbhum craton, India, and its similarity with ‘Barberton type komatiite.’ J. Afr. Earth Sci. 101, 135–147 (2015). https://doi.org/10.1016/J.JAFREARSCI.2014.09.014

    Article  Google Scholar 

  9. E.N. Ndime, S. Ganno, L.S. Tamehe, J.P. Nzenti, Petrography, lithostratigraphy and major element geochemistry of Mesoarchean metamorphosed banded iron formation-hosted Nkout iron ore deposit, north western Congo craton, Central West Africa. J. Afr. Earth Sci. 148, 80–98 (2018). https://doi.org/10.1016/J.JAFREARSCI.2018.06.007

    Article  Google Scholar 

  10. T. Teutsong, J.P. Temga, A.A. Enyegue, N.N. Feuwo, D. Bitom, Petrographic and geochemical characterization of weathered materials developed on BIF from the Mamelles iron ore deposit in the Nyong unit, South-West Cameroon. Acta Geochim. 40(2), 163–175 (2021). https://doi.org/10.1007/s11631-020-00421-7

    Article  Google Scholar 

  11. G.M. da Costa, V. Barrón, C.M. Ferreira, J. Torrent, The use of diffuse reflectance spectroscopy for the characterization of iron ores. Miner. Eng. 22(14), 1245–1250 (2009). https://doi.org/10.1016/j.mineng.2009.07.003

    Article  Google Scholar 

  12. F. Nellros, M.J. Thurley, Automated image analysis of iron-ore pellet structure using optical microscopy. Miner. Eng. 24(14), 1525–1531 (2011). https://doi.org/10.1016/j.mineng.2011.08.001

    Article  Google Scholar 

  13. E. Donskoi et al., Automated optical image analysis of goethitic iron ores. Miner. Process. Extr. Metall. Trans. Inst. Min. Metall. 131(1), 14–24 (2022). https://doi.org/10.1080/25726641.2019.1706375

    Article  Google Scholar 

  14. S. Roy, Recovery improvement of fine magnetic particles by floc magnetic separation. Miner. Process. Extr. Metall. Rev. 33(3), 170–179 (2012). https://doi.org/10.1080/08827508.2011.562948

    Article  Google Scholar 

  15. D. Wang, J. Pan, D. Zhu, Z. Guo, C. Yang, Z. Yuan, An efficient process to upgrade siderite ore by pre oxidation-magnetization roasting-magnetic separation-acid leaching. J. Mater. Res. Technol. 19, 4296–4307 (2022). https://doi.org/10.1016/j.jmrt.2022.07.008

    Article  Google Scholar 

  16. R.K. Dishwar, A.K. Mandal, O.P. Sinha, Studies on reduction behaviour of highly fluxed iron ore pellets for application in steelmaking. Mater. Today Proc. 46, 1471–1475 (2021). https://doi.org/10.1016/J.MATPR.2020.10.886

    Article  Google Scholar 

  17. J.C.Ø. Andersen, G.K. Rollinson, B. Snook, R. Herrington, R.J. Fairhurst, Use of QEMSCAN® for the characterization of Ni-rich and Ni-poor goethite in laterite ores. Miner. Eng. 22(13), 1119–1129 (2009). https://doi.org/10.1016/J.MINENG.2009.03.012

    Article  Google Scholar 

  18. K. Guanira et al., Methodological approach for mineralogical characterization of tailings from a Cu(Au, Ag) skarn type deposit using QEMSCAN (quantitative evaluation of minerals by scanning electron microscopy). J. Geochemical Explor. 209, 106439 (2020). https://doi.org/10.1016/J.GEXPLO.2019.106439

    Article  Google Scholar 

  19. L. Zhang, K. Qiu, Z. Hou, F. Pirajno, E. Shivute, Y. Cai, Fluid-rock reactions of the Triassic Taiyangshan porphyry Cu-Mo deposit (West Qinling, China) constrained by QEMSCAN and iron isotope. Ore Geol. Rev. 132, 104068 (2021). https://doi.org/10.1016/J.OREGEOREV.2021.104068

    Article  Google Scholar 

  20. S.K. Jena, H. Sahoo, S.S. Rath, D.S. Rao, S.K. Das, B. Das, Characterization and processing of iron ore slimes for recovery of iron values. Miner. Process. Extr. Metall. Rev. 36(3), 174–182 (2015). https://doi.org/10.1080/08827508.2014.898300

    Article  Google Scholar 

  21. J. Zhao, K. Ni, Y. Su, Y. Shi, An evaluation of iron ore tailings characteristics and iron ore tailings concrete properties. Constr. Build. Mater. 286, 122968 (2021). https://doi.org/10.1016/J.CONBUILDMAT.2021.122968

    Article  Google Scholar 

  22. P. Prusti, S.S. Rath, N. Dash, B.C. Meikap, S.K. Biswal, Pelletization of hematite and synthesized magnetite concentrate from a banded hematite quartzite ore: A comparison study. Adv. Powder Technol. 32(10), 3735–3745 (2021). https://doi.org/10.1016/j.apt.2021.08.025

    Article  Google Scholar 

  23. J.S. Guiral-Vega, L. Pérez-Barnuevo, J. Bouchard, A. Ure, E. Poulin, C. Du Breuil, Particle-based characterization and classification to evaluate the behavior of iron ores in drum-type wet low-intensity magnetic separation. Miner. Eng. 186, 107755 (2022). https://doi.org/10.1016/J.MINENG.2022.107755

    Article  Google Scholar 

  24. N. Khajehzadeh, O. Haavisto, L. Koresaar, On-stream mineral identification of tailing slurries of an iron ore concentrator using data fusion of LIBS, reflectance spectroscopy and XRF measurement techniques. Miner. Eng. 113, 83–94 (2017). https://doi.org/10.1016/J.MINENG.2017.08.007

    Article  Google Scholar 

  25. M. Omran, T. Fabritius, A.M. Elmahdy, N.A. Abdel-Khalek, M. El-Aref, A.E.H. Elmanawi, XPS and FTIR spectroscopic study on microwave treated high phosphorus iron ore. Appl. Surf. Sci. 345, 127–140 (2015). https://doi.org/10.1016/j.apsusc.2015.03.209

    Article  Google Scholar 

  26. S. Yuan, H. **ao, R. Wang, Y. Li, P. Gao, Improved iron recovery from low-grade iron ore by efficient suspension magnetization roasting and magnetic separation. Miner. Eng. 186, 107761 (2022). https://doi.org/10.1016/J.MINENG.2022.107761

    Article  Google Scholar 

  27. C. Scharm et al., Direct reduction of iron ore pellets by H2 and CO: In-situ investigation of the structural transformation and reduction progression caused by atmosphere and temperature. Miner. Eng. 180, 107459 (2022). https://doi.org/10.1016/J.MINENG.2022.107459

    Article  Google Scholar 

  28. J.P.R. de Villiers, L. Lu, Quantitative XRD analysis and evaluation of iron ore, sinter, and pellets. Iron Ore Mineral. Process. Environ. Sustain. (2022). https://doi.org/10.1016/B978-0-12-820226-5.00004-5

    Article  Google Scholar 

  29. A.A. Shaltout, M.M. Gomma, M.W. Ali-Bik, Utilization of standardless analysis algorithms using WDXRF and XRD for Egyptian iron ore identification. X-Ray Spectrom. 41(6), 355–362 (2012). https://doi.org/10.1002/xrs.2410

    Article  Google Scholar 

  30. J.P.R. De Villiers, L. Lu, XRD analysis and evaluation of iron ores and sinters. Iron Ore Mineral. Process. Environ. Sustain. (2015). https://doi.org/10.1016/B978-1-78242-156-6.00003-4

    Article  Google Scholar 

  31. M.I. Pownceby, S. Hapugoda, J. Manuel, N.A.S. Webster, C.M. MacRae, Characterisation of phosphorus and other impurities in goethite-rich iron ores – Possible P incorporation mechanisms. Miner. Eng. 143, 106022 (2019). https://doi.org/10.1016/j.mineng.2019.106022

    Article  Google Scholar 

  32. G. Tiu, Y. Ghorbani, N. Jansson, C. Wanhainen, N.J. Bolin, Ore mineral characteristics as rate-limiting factors in sphalerite flotation: Comparison of the mineral chemistry (iron and manganese content), grain size, and liberation. Miner. Eng. 185, 107705 (2022). https://doi.org/10.1016/J.MINENG.2022.107705

    Article  Google Scholar 

  33. S. Dwivedy, P.R. Sahoo, Geology and trace element geochemistry of the albitite hosted iron ore mineralization around Khetri copper deposit, India: Implications for an IOA type deposit. Ore Geol. Rev. 138, 104343 (2021). https://doi.org/10.1016/j.oregeorev.2021.104343

    Article  Google Scholar 

  34. I.C. Ferreira et al., Reuse of iron ore tailings for production of metakaolin-based geopolymers. J. Mater. Res. Technol. 18, 4194–4200 (2022). https://doi.org/10.1016/j.jmrt.2022.03.192

    Article  Google Scholar 

  35. Y. Mochizuki, N. Tsubouchi, Removal of gangue components from low-grade iron ore by hydrothermal treatment. Hydrometallurgy 190, 105159 (2019). https://doi.org/10.1016/j.hydromet.2019.105159

    Article  Google Scholar 

  36. J.C.Á. Iglesias et al., Automatic characterization of iron ore by digital microscopy and image analysis. J. Mater. Res. Technol. 7(3), 376–380 (2018). https://doi.org/10.1016/j.jmrt.2018.06.014

    Article  Google Scholar 

  37. J. Yu, Z. Guo, H. Tang, Dephosphorization treatment of high phosphorus oolitic iron ore by hydrometallurgical process and leaching kinetics. ISIJ Int. 53(12), 2056–2064 (2013). https://doi.org/10.2355/isi**ternational.53.2056

    Article  Google Scholar 

  38. L.D. Santos, P.R.G. Brandao, Morphological varieties of goethite in iron ores from Minas Gerais, Brazil. Miner. Eng. 16(11 SUPPL.), 1285–1289 (2003). https://doi.org/10.1016/j.mineng.2003.07.007

    Article  Google Scholar 

  39. D.S. Rao, T.V.V. Kumar, S.S. Rao, S. Prabhakar, G.B. Raju, Mineralogy and Geochemistry of a low grade iron ore sample from bellary-hospet sector, India and their implications on beneficiation. J. Miner. Mater. Charact. Eng. 08(02), 115–132 (2009). https://doi.org/10.4236/jmmce.2009.82011

    Article  Google Scholar 

  40. G. Liu, V. Strezov, J.A. Lucas, L.J. Wibberley, Thermal investigations of direct iron ore reduction with coal. Thermochim. Acta 410, 133–140 (2004). https://doi.org/10.1016/S0040-6031(03)00398-8

    Article  Google Scholar 

  41. E. Donskoi et al., Iron ore textural information is the key for prediction of downstream process performance. Miner. Eng. 86, 10–23 (2016). https://doi.org/10.1016/j.mineng.2015.11.009

    Article  Google Scholar 

  42. A. Poliakov, E. Donskoi, Separation of touching particles in optical image analysis of iron ores and its effect on textural and liberation characterization. Eur. J. Mineral. 31(3), 485–505 (2019). https://doi.org/10.1127/ejm/2019/0031-2844

    Article  Google Scholar 

Download references

Funding

No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, literature review, and writing-original draft preparation contributed by MP; writing—original draft preparation contributed by HMJ; writing—review and editing contributed by HV.

Corresponding author

Correspondence to Mohan Poojari.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poojari, M., Vardhan, H. & Jathanna, H.M. Iron Ore Characterization Techniques in Mineral Processing. J. Inst. Eng. India Ser. D 105, 543–551 (2024). https://doi.org/10.1007/s40033-023-00483-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40033-023-00483-w

Keywords

Navigation