Log in

Biosorption of Nickel from Industrial Wastewater using Zygnema sp.

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series A Aims and scope Submit manuscript

Abstract

Contamination of water sources with heavy metals is a very important pollution problem in the current scenario. Biosorption is an effective method for the removal of heavy metal ions from wastewaters. In this study, the removal of Nickel(II) ions from electroplating industrial wastewater using biosorbent prepared from fresh water algal biomass Zygnema was investigated under batch mode. The sorption efficiency of nickel on Zygnema sp. was evaluated as a function of time, pH and sorbent dosage. The Nickel(II) uptake was dependent on initial pH with pH 3 being the optimum value. For 100 mg/L initial Nickel(II) concentration, sorption equilibrium was attained at a contact time of 100 min. The sorbent dosage affected the biosorption efficiency and maximum removal of 76.4 % was obtained at a dosage of 7.5 g/L. From the performance studies, algal biosorbent Zygnema is found to be a valuable material for the removal of Nickel from industrial wastewater and a better substitute for the conventional adsorbents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

X:

Weight of substance adsorbed

M:

Weight of adsorbent

Ce :

Concentration remaining in solution

R :

Gas constant (8.314 J/mol K)

T :

Absolute temperature, K

b & qmax :

Langmuir isotherm constants

Co :

Initial concentration of the adsorbate in solution

K:

Freundlich adsorption capacity

n:

Freundlich adsorption intensity

qt (mg/g):

Amount of adsorbate adsorbed at time (t), min

qe :

Biosorption capacity at equilibrium (mg/g)

k1 :

Pseudo-first-order rate constant, min−1

t:

Contact time, min

k2 :

Pseudo-second-order rate constant

References

  1. Z. Aksu, G. Dönmez, Binary biosorption of cadmium(II) and nickel(II) onto dried Chlorella vulgaris: Co-ion effect on mono-component isotherm parameters. Process Biochem. 41, 860–868 (2006)

    Article  Google Scholar 

  2. J.P.K. Wong, Y.S. Wong, N.F.Y. Tam, Nickel biosorption by two Chlorella species, C. Vulgaries (a commercial species) and C. Miniata (a local isolate). Bioresour. Technol. 73, 133–137 (2000)

    Article  Google Scholar 

  3. S. Congeevarama, S. Dhanarani, J. Park, M. Dexilin, K. Thamaraiselvi, Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates. J. Hazard. Mater. 146, 270–277 (2007)

    Article  Google Scholar 

  4. S. Schiewer, B. Volesky, Modelling of the proton–metal ion exchange in biosorption. Environ. Sci. Technol. 29, 3049–3058 (1995)

    Article  Google Scholar 

  5. B. Volesky, Removal and recovery of heavy metals by biosorption, in Biosorption of Heavy Metals, ed. by B. Volesky (CRC Press, Inc., Boca Raton, FL, 1990), pp. 7–43

    Google Scholar 

  6. B. Volesky, Sorption and Biosorption (BV Sorbex, St. Lambert, 2003), pp. 311–316

    Google Scholar 

  7. P. Loderio et al., Biosorption of cadmium by the protonated microalga Sargassum muticum: binding analysis with a non ideal, competitive and thermodynamically consistent adsorption model. J. Colloid Interfaces Sci. 289(2), 352–358 (2005)

    Article  Google Scholar 

  8. G.J. Ramelow, D. Fralick, Y. Zhao, Factors affecting the uptake of aqueous metal ions by dried seeweed biomass. Microbios 72, 81–93 (1992)

    Google Scholar 

  9. N. Ahalya, T.V. Ramachandra, R.D. Kanamadi, Biosorption of heavy metals. Res. J. Chem. Environ. 7(4), 71–79 (2003)

    Google Scholar 

  10. K. Chojnacka, A. Chojnacki, H. Gorecka, Biosorption of Cr3+, Cd2+ and Cu2+ ions by blue–green algae Spirulina sp.: kinetics, equilibrium and the mechanism of the process. Chemosphere 59, 75–84 (2005)

    Article  Google Scholar 

  11. G.C. Donmez, Z. Aksu, A. Ozturk, T. Kutsal, A comparative study on heavy metal biosorption characteristics of some algae. Process Biochem. 34, 885–892 (1995)

    Article  Google Scholar 

  12. I. Reya Isaac, M. Lakshmi Prabha, Equilibrium and kinetic studies on biosorption of Cr (VI) by non-living mycelial suspensions of Aspergillus niger. Int. J. Pharm. Bio. Sci. 2(3), B212–B222 (2011)

  13. A. Rezaee, B. Ramavandi, F. Ganati, M. Ansari, A. Solimanian, Biosorption of mercury by biomass of filamentous algae Spirogyra species. J. Biol. Sci. 6, 695–700 (2006)

    Article  Google Scholar 

  14. E. Thirunavukkarasu, K. Palanivelu, Biosorption of Cr(VI) from plating effluent using marine algal mass. Indian J. Biotechnol. 6, 359–364 (2007)

    Google Scholar 

  15. H. Yin, B. He, H. Peng, J. Ye, F. Yang, N. Zhang, Removal of Cr(VI) and Ni(II) from aqueous solution by fused yeast: study of cations release and biosorption mechanism. J. Hazard. Mater. 158, 568–576 (2008)

    Article  Google Scholar 

  16. N.R. Bishnoi, R. Kumar, S. Kumar, S. Rani, Biosorption of Cr(III) from aqueous solution using algal biomass Spirogyra spp. J. Hazard. Mater. 145(1–2), 142–147 (2007)

    Article  Google Scholar 

  17. S.M. Hamza, H.F. Ahmed, A.M. Ehab, F.M. Mohammad, Optimization of cadmium, zinc and copper biosorption in an aqueous solution by Saccharomyces cerevisiae. J. Am. Sci. 6(12), 597–604 (2010)

    Google Scholar 

  18. M. Ghasemi, M. Rahimnejad, G.D. Najafpour, M. Sedighi, M. Asadi, B. Hashemiyeh, Investigation on batch biosorption of lead using Lactobacillus bulgaricus in an aqueous phase system. Biokemistri 20(2), 41–46 (2008)

    Google Scholar 

  19. R. Soni, A. Gupta, Batch biosorption studies of Cr(VI) by using Zygnema (green algae). J. Chem. Pharm. Res. 3(6), 950–960 (2011)

    Google Scholar 

  20. M.Y. Arica, I. Tuzun, Process Biochem. 40, 2351–2358 (2005)

    Article  Google Scholar 

  21. S. Karthikeyan, R. Balasubramanian, C.S.P. Iyer, Evaluation of the marine algae Ulva fasciata and Sargassum sp. for the biosorption of Cu(II) from aqueous solutions. Bioresour. Technol. 98, 452–455 (2007)

    Article  Google Scholar 

  22. S. Ahmady-Asbchin, Y. Andres, C. Gerente, P.L. Cloirec, Biosorption of Cu(II) from aqueous solution by Fucus serratus: surface characterization and sorption mechanisms. Bioresour. Technol. 99, 6150–6155 (2008)

    Article  Google Scholar 

  23. M.D. Mullen, D.C. Wolf, F.G. Ferris, T. Beveridge, C.A. Flemming, G.W. Bailey, Appl. Environ. Microbiol. 55, 3143–3149 (1989)

    Google Scholar 

  24. F.N. Acar, E. Malkoc, The removal of chromium(VI) from aqueous solutions by Fagus orientalis. Bioresour. Technol. 94(12), 13–15 (2004)

    Article  Google Scholar 

  25. L.G. Gazso, The key microbial processes in the removal of toxic metals and radionuclides from the environment. Cent. Eur. J. Occup. Environ. Med. 7(3–4), 178–185 (2001)

    Google Scholar 

  26. I. Langmuir, Adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40(9), 1361–1403 (1918)

    Article  Google Scholar 

  27. H. Freundlich, Colloid and Capillary Chemistry (E.P. Dutton and Co., New York, 1928)

    Google Scholar 

  28. M.I. Tempkin, V. Pyzhev, Kinetics of ammonia synthesis on promoted iron catalyst. Acta Phys. Chim. USSR 12, 327–356 (1940)

  29. D. Sarkar, D.K. Chattoraj, J. Colloid Interface Sci. 157, 219–226 (1993)

    Article  Google Scholar 

  30. Y.S. Ho, G. McKay, J. Environ. Sci. Health 34, 1179–1204 (1999)

    Article  Google Scholar 

  31. Y.S. Ho, G. McKay, Proc. Biochem. 34, 451–465 (1999)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Tamilnadu State Council for Science and Technology for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adlin Blessi T.L..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivaprakash, K., Blessi T.L., A. & Madhavan, J. Biosorption of Nickel from Industrial Wastewater using Zygnema sp.. J. Inst. Eng. India Ser. A 96, 319–326 (2015). https://doi.org/10.1007/s40030-015-0131-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40030-015-0131-1

Keywords

Navigation