Log in

Abstract

Selenium has attracted considerable attention from different scientific communities since its discovery by Jöns Jacob Berzelius in 1817. Initial 150 years witnessed limited activities in selenium research which started expanding significantly after the 1970s. Today areas as diverse as physics, chemistry, biology, medicine, environment, food, agriculture, etc. are finding research problems related to selenium. This perspective aims to give a brief overview of the emerging trends in different areas of selenium research, particularly in biological and material sciences, which may hold major promise for the future. Relevance of organoselenium compounds in biological processes as well as in the development of advanced materials is covered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(Source SCOPUS)

Fig. 2
Scheme 1
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Scheme 3
Scheme 4
Fig. 6

(Reproduced from Dalton Trans., 40 (2011) 9194–9201, Royal Society of Chemistry, UK)

Fig. 7

(Reproduced with permission from Springer, Ref. 30 (J. Materials Science: Materials in Electronics, 29 (2018) 8937–8946)

Similar content being viewed by others

References

  1. Boyd R (2011) Selenium stories. Nat Chem 3:570

    CAS  PubMed  Google Scholar 

  2. Jain VK (2018) An overview of organoselenium chemistry: from fundamentals to synthesis, in ‘Organoselenium compounds in biology and medicine. In Jain VK, Priyadarsini KI (eds) Organoselenium Compounds in Biology and Medicine, RSC, UK, Chapter-1, pp 1–33

  3. Chasteen TG, Bentley R (2003) Biomethylation of selenium and tellurium: microorganisms and plants. Chem Rev 103:1–26

    CAS  PubMed  Google Scholar 

  4. White PJ (2018) Selenium in soils and crops, in ‘Selenium, Molecular and Integrative Toxicology’ (2018). Ed. Michalke B, Springer International Publishing AG pp 29–50. https://doi.org/10.1007/978-3-319-95390-8_2

  5. Rayman MP (2008) Food-chain selenium and human health: emphasis on intake. Br J Nutr 100:254–268

    CAS  PubMed  Google Scholar 

  6. Fairweather-Tait SJ, Bao Y, Broadley MR, Collings R, Ford D, Hesketh JE, Hurst R (2011) Selenium in human health and disease. Antioxid Redox Signal 14:1337–1383

    CAS  PubMed  Google Scholar 

  7. Vinceti M, Filippini T, Wise LA (2018) Environmental selenium and human health: an update. Curr Environ Health Rep 5:464–485

    PubMed  Google Scholar 

  8. Sun G-X, AvA M, Li G, Chen Z, Yang L, Chen S, Zhu Y (2016) Distribution of soil selenium in China is potentially controlled by deposition and volatilization? Sci Rep 6:20953

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  9. Steudel R, Strauss E-M (1984) Homocyclic selenium molecules and related cations. Adv Inorg Chem Radiochem 28:135–166

    CAS  Google Scholar 

  10. Marple M, Badger J, Hung I, Gan Z, Kovnir K, Sen S (2017) Structure of amorphous selenium by 2D 77Se NMR spectroscopy: an end to the dilemma of chain versus ring. Angew Chem Inter Ed 56:9777–9781

    CAS  Google Scholar 

  11. Cherin P, Unger P (1967) The crystal structure of trigonal selenium. Inorg Chem 6:1589–1591

    CAS  Google Scholar 

  12. Foss O, Janickis V (1980) Crystal structure of y-monoclinic selenium. J Chem Soc Dalton Trans. https://doi.org/10.1039/DT9800000624

    Article  Google Scholar 

  13. Kedarnath G, Jain VK (2018) Quantum dots for type III photovoltaics. In Skabara P, Malik MA (eds) Nanostructured materials for type-III photovoltaics, RSC, UK, Chapter-13, pp 436–471

  14. Schwarz K, Foltz CM (1957) Selenium as an integral part of factor 3 against dietary necrotic liver degeneration. J Am Chem Soc 79:3292–3293

    CAS  Google Scholar 

  15. Flohe L, Günzler WA, Schock HH (1973) Glutathione peroxidase: a selenoenzymes. FEBS Lett 32:132–134

    CAS  PubMed  Google Scholar 

  16. Forstrom JW, Zakowski JJ, Tappel AL (1978) Identification of the catalytic site of rat liver glutathione peroxidase as selenocysteine. Biochemistry 17:2639–2644

    CAS  PubMed  Google Scholar 

  17. Nogueira CW, Zeni G, Rocha JB (2004) Organoselenium and organotelluriumcompounds: toxicology and pharmacology. Chem Rev 104:6255–6286

    CAS  PubMed  Google Scholar 

  18. Nogueira CW, Rocha JB (2011) Toxicology and pharmacology of selenium: emphasis on synthetic organoselenium compounds. Arch Toxicol 85:1313–1359

    CAS  PubMed  Google Scholar 

  19. Nogueira CW, Barbosa NV, Rocha JB (2021) Toxicology and pharmacology of synthetic organoselenium compounds: an update. Arch Toxicol 95:1179–1226

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Fernandes AP, Gandin V (2015) Selenium compounds as therapeutic agents in cancer. Biochim Biophys Acta 1850:1642–1660

    CAS  PubMed  Google Scholar 

  21. Wrobel JK, Power R, Toborek M (2016) Biological activity of selenium: revisited. Int Union Biochem Mol Biol 68:97–105

    CAS  Google Scholar 

  22. Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG (1973) Selenium: biochemical role as a component of glutathione peroxidase. Science 179:588–590

    CAS  PubMed  ADS  Google Scholar 

  23. Papp LV, Lu J, Holmgren A, Khanna KK (2007) From selenium to selenoproteins: synthesis, identity, and their role in human health. Antioxid Redox Signal 9:775–806

    CAS  PubMed  Google Scholar 

  24. Sies H, Matumoto H (1997) Ebselen as a glutathione peroxidase mimic and as a scavenger of peroxynitrite. Ad Pharmacol 38:229–246. https://doi.org/10.1016/s1054-3589(08)60986-2

    Article  CAS  Google Scholar 

  25. Azad GK, Tomar RS (2014) Ebselen, a promising antioxidant drug: mechanisms of action and targets of biological pathways. Mol Biol Rep 41:4865–4879. https://doi.org/10.1007/s11033-014-3417-x

    Article  CAS  PubMed  Google Scholar 

  26. Parnham MJ, Sies H (2013) The early research and development of ebselen. Biochem Pharmac 86:1248–1253

    CAS  Google Scholar 

  27. Jain VK, Priyadarsini KI (2010) Organochalcogen compounds in materials science and biology. Proc Natl Acad Sci, Sect A 80:269–280

    Google Scholar 

  28. Kedarnath G, Jain VK (2013) Pyridyl and pryrimidyl chalcogen (Se and Te) compounds: a family of multi utility molecules. Coord Chem Rev 257:1409–1435

    CAS  Google Scholar 

  29. Singh A, Kaushik A, Dhau JS, Kumar R (2022) Exploring coordination preferences and biological applications of pyridyl-based organochalcogen (Se, Te) ligands. Coord Chem Rev 450:214254

    CAS  Google Scholar 

  30. Kunwar A, Priyadarsini KI, Jain VK (2021) 3,3′-Diselenodipropionic acid (DSePA): a redox active multifunctional molecule of biological relevance. Biochem Biophys Acta - General Subjects 1865:129768

    CAS  Google Scholar 

  31. Gandhi KA, Goda JS, Gandhi VV, Sadanpurwala A, Jain VK, Joshi K, Epari S, Rane S, Mohanty B, Chaudhari P, Kembhavi S, Kunwar A, Gota V, Priyadarsini KI (2019) Oral administration of 3,3’-diselenodipropionic acid prevents thoracic radiation induced pneumonitis in mice by suppressing NF-kB/IL—17/G-CSF/ neutophil axis. Free Radical Biol Med 145:8–19

    CAS  Google Scholar 

  32. Indira Priyadarsini K, Jain VK (2022) Selenium and platinum compounds in cancer therapy: potentiality of their progeny as future chemotherapeutics. Current Chem Biol 16:1–11

    Google Scholar 

  33. Rocha JBT, Oliveira CS, Nogara PA (2018) Toxicology and anticancer activity of synthetic organoselenium compounds. In Jain VK, Priyadarsini KI (eds) Organoselenium Compounds in Biology and Medicine, RSC, UK, Chapter 13, pp 342–376

  34. Chopade SM, Phadnis PP, Wadawale A, Hodge AS, Jain VK (2012) Synthesis and characterization of ethylenediamine/(diammine)platinum(II) coordinated to seleno ligands containing carboxylic acid functionality. Inorg Chim Acta 385:185–189

    CAS  Google Scholar 

  35. Chopade SM, Phadnis PP, Hodge AS, Wadawale A, Jain VK (2015) Synthesis, characterization, structures and antitumor activity of platinum(II) complexes(II) containing dimethylpyroazole based selenium ligands. Inorg Chim Acta 427:72–80

    CAS  Google Scholar 

  36. Kunwar A, Priyadarsini KI (2020) Selenium, a micronutrient can modulate viral diseases including COVID-19. Indian J Biochem Biophys 57:711–721

    Google Scholar 

  37. Gill H, Walker G (2008) Selenium, immune function and resistance to viral infections. Nutr Diet 65(S41):S47

    Google Scholar 

  38. ** Z, ** Z, Du X, Xu Y, Deng Y, Liu M, Zhao Y, Zhang B, Li X, Zhang L, Peng C, Duan Y, Yu J, Wang L, Yang K, Liu F, Jiang R, Yang X, Liu X, Yang X, Bai F, Liu H, Liu X, Guddat LW, Xu W, **ao G, Qin C, Shi Z, Jiang H, Rao Z, Yang H et al (2020) Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature 582:289–293

    CAS  PubMed  ADS  Google Scholar 

  39. Węglarz-Tomczak E, Tomczak JM, Talma M, Burda-Grabowska M, Giurg M, Brul S (2021) Identification of ebselen and its analogues as potent covalent inhibitors of papain-like protease from SARS-CoV-2. Sci Rep 11:3640. https://doi.org/10.1038/s41598-021-83229-6

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  40. Węglarz-Tomczak E, Tomczak JM, Giurg M, Burda-Grabowska M, Brul S (2021) Discovery of potent inhibitors of PL pro CoV2 by screening a library of selenium-containing compounds. BioR**v. https://doi.org/10.1101/2020.05.20.107052

    Article  Google Scholar 

  41. Jain VK, Kedarnath G (2018) Applications of metal selenium/tellurium compounds in materials science. Phys Sci Rev 4(5):20170127

    Google Scholar 

  42. Sharma RK, Kedarnath G, Jain VK, Wadawale A, Pillai CGS, Nalliath M, Vishwanadh B (2011) Copper(I) 2-pyridylselenolates and tellurolates: Synthesis, structures and their utility as molecular precursors for the preparation of copper chalcogenide nanocrystals and thin films. Dalton Trans 40:9194–9201

    CAS  PubMed  Google Scholar 

  43. Sharma RK, Wadawale A, Kedarnath G, Manna D, Ghanty TK, Vishwanadh B, Jain VK (2014) Synthesis, structures and DFT calculations of 2-(4,6-dimethylpyrimidyl)selenolate complexes of Cu(I), Ag(I) and Au(I) and their conversion into metal selenide nano-crystals. Dalton Trans 43(6525):6535

    Google Scholar 

  44. Sharma RK, Kedarnath G, Wadawale A, Betty CA, Vishwanadh B, Jain VK (2012) Dirganotin(IV) 2-pyridylselenolates: synthesis, structures and their utility as molecular precursors for the preparation of tin selenide nanocrystals and thin films. Dalton Trans 41:12129–12138

    CAS  PubMed  Google Scholar 

  45. Tyagi A, Kedarnath G, Wadawale A, Shah AY, Jain VK, Vishwanadh B (2016) Diorganotin(IV) 4,6-dimethyl-2-pyrimidylselenolates: synthesis, structures and their utility as molecular precursors for the preparation of SnSe2 nano-sheets and thin films. RSC Adv 6(8367):8376

    ADS  Google Scholar 

  46. Tyagi A, Shah AY, Kedarnath G, Wadawale A, Singh V, Tyagi D, Betty CA, Lal C, Jain VK (2018) Synthesis, characterization and photovoltaic properties of phase pure Cu2SnSe3 nanostructures using molecular precursor. J Mater Sci: Mater Electron 29:8937–8946

    CAS  Google Scholar 

  47. Sharma RK, Kedarnath G, Kushwah N, Pal MK, Wadawale A, Vishwanadh B, Paul B, Jain VK (2013) Indium(III) (3-methyl-2-pyridyl)selenolate: synthesis, structure and its utility as a single source precursor for the preparation of In2Se3 nanocrystals and a dual source precursor with [Cu{SeC5H3(Me-3)N}]4 for the preparation of CuInSe2. J Organomet Chem 747:113–118

    CAS  Google Scholar 

  48. **a X, Wang L, Sui N, Colvin VL, William WY (2020) Recent progress in transition metal selenide electrocatalysts for water splitting. Nanoscale 12(23):12249–12262

    CAS  PubMed  Google Scholar 

  49. Peng X, Yan Y, ** X, Huang X, ** W, Gao B, Chub PK (2020) Recent advance and prospectives of electrocatalysts based on transition metal selenides for efficient water splitting. Nano Energy 78:105234

    CAS  Google Scholar 

  50. Kukunuri S, Austeria PM, Sampath S (2016) Electrically conducting palladium selenide (Pd4Se, Pd17Se15, Pd7Se4) phases: synthesis and activity towards hydrogen evolution reaction. Chem Commun 52:206–209

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Department of Atomic Energy for funding. We sincerely acknowledge the contributions of our collaborators, colleagues and students whose names appear as co-authors in the publications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vimal K. Jain.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, V.K., Priyadarsini, K.I. Selenium: A Wonder Element in Life and for Life. Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 94, 1–10 (2024). https://doi.org/10.1007/s40010-023-00858-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40010-023-00858-4

Keywords

Navigation