Log in

Characterization of Gold-Enhanced Titania: Boosting Cell Proliferation and Combating Bacterial Infestation

  • Original Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

BACKGROUND:

In this study an approach was made to efficaciously synthesize gold enhanced titania nanorods by electrospinning. This study aims to address effects of gold enhanced titania nanorods on muscle precursor cells. Additionally, implant related microbial infections are prime cause of various disastrous diseases. So, there is predictable demand for synthesis of novel materials with multifunctional adaptability.

METHODS:

Herein, gold nanoparticles were attached on titania nanorods and described using many sophisticated procedures such as XRD, SEM, EDX and TEM. Antimicrobial studies were probed against Gram-negative Escherichia coli. C2C12 cell lines were exposed to various doses of as-prepared gold enhanced titania nanorods in order to test in vitro cytotoxicity and proliferation. Cell sustainability was assessed through Cell Counting Kit–8 assay at regular intervals. A phase-contrast microscope was used to examine morphology of exposed C2C12 cells and confocal laser scanning microscope was used to quantify cell viability.

RESULTS:

The findings indicate that titania nanorods enhanced with gold exhibit superior antimicrobial efficacy compared to pure titania. Furthermore, newly synthesized gold-enhanced titania nanorods illustrate that cell viability follows a time and concentration dependent pattern.

CONCLUSION:

Consequently, our study provides optimistic findings indicating that titania nanorods adorned with gold hold significant potential as foundational resource for develo** forthcoming antimicrobial materials, suitable for applications both in medical and biomedical fields. This work also demonstrates that in addition to being extremely biocompatible, titania nanorods with gold embellishments may be used in a range of tissue engineering applications in very near future.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability statement

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Csapo R, Gumpenberger M, Wessner B. Skeletal muscle extracellular matrix–what do we know about its composition, regulation, and physiological roles? Narrative Rev Front Physiol. 2020;11:253.

    Article  Google Scholar 

  2. Pedersen BK, Febbraio MA. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol. 2012;8:457–65.

    Article  CAS  PubMed  Google Scholar 

  3. Abdel-Raouf N, Al-Enazi NM, Ibraheem IB. Green biosynthesis of gold nanoparticles using Galaxaura elongata and characterization of their antibacterial activity. Arab J Chem. 2017;10:S3029–39.

    Article  CAS  Google Scholar 

  4. Aljabali AA, Akkam Y, Al Zoubi MS, Al-Batayneh KM, Al-Trad B, Abo Alrob O, et al. Synthesis of gold nanoparticles using leaf extract of Ziziphus zizyphus and their antimicrobial activity. Nanomaterials. 2018;8:174.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Yeh YC, Creran B, Rotello VM. Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale. 2012;4:1871–80.

    Article  CAS  PubMed  Google Scholar 

  6. da Rocha FR, Haupenthal DPdS, Zaccaron RP, Corrêa MEAB, Tramontin NdS, Fonseca JP, et al. Therapeutic effects of iontophoresis with gold nanoparticles in the repair of traumatic muscle injury. J Drug Target. 2020;28:307–19.

    Article  PubMed  Google Scholar 

  7. Opris R, Tatomir C, Olteanu D, Moldovan R, Moldovan B, David L, et al. The effect of Sambucus nigra L. extract and phytosinthesized gold nanoparticles on diabetic rats. Colloids Surf B: Biointerfaces. 2017;150:192–200.

    Article  CAS  PubMed  Google Scholar 

  8. Arvizo RR, Rana S, Miranda OR, Bhattacharya R, Rotello VM, Mukherjee P. Mechanism of anti-angiogenic property of gold nanoparticles: role of nanoparticle size and surface charge. Nanomed Nanotechnol Biol Med. 2011;7:580–7.

    Article  CAS  Google Scholar 

  9. Saha S, **ong X, Chakraborty PK, Shameer K, Arvizo RR, Kudgus RA, et al. Gold nanoparticle reprograms pancreatic tumor microenvironment and inhibits tumor growth. ACS Nano. 2016;10:10636–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shaheen TI, El-Naggar ME, Hussein JS, El-Bana M, Emara E, El-Khayat Z, et al. Antidiabetic assessment; in vivo study of gold and core-shell silver-gold nanoparticles on streptozotocin-induced diabetic rats. Biomed Pharm. 2016;83:865–75.

    Article  CAS  Google Scholar 

  11. Ge J, Liu K, Niu W, Chen M, Wang M, Xue Y, et al. Gold and gold-silver alloy nanoparticles enhance the myogenic differentiation of myoblasts through p38 MAPK signaling pathway and promote in vivo skeletal muscle regeneration. Biomaterials. 2018;175:19–29.

    Article  CAS  PubMed  Google Scholar 

  12. Al-Shwaheen A, Aljabali AA, Alomari G, Al Zoubi M, Alshaer W, Al-Trad B, et al. Molecular and cellular effects of gold nanoparticles treatment in experimental diabetic myopathy. Heliyon. 2022;8:e10358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ehlert M, Roszek K, Jędrzejewski T, Bartmański M, Radtke A. Titania nanofiber scaffolds with enhanced biointegration activity—preliminary in vitro studies. Int J Mol Sci. 2019;20:5642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nel AE, Mädler L, Velegol D, **a T, Hoek EM, Somasundaran P, et al. Understanding biophysicochemical interactions at the nano–bio interface. Nat Mater. 2009;8:543–57.

    Article  CAS  PubMed  Google Scholar 

  15. Shin YJ, Lee HI, Kim MK, Wee WR, Lee JH, Koh JH, et al. Biocompatibility of nanocomposites used for artificial conjunctiva: in vivo experiments. Curr Eye Res. 2007;32:1–10.

    Article  CAS  PubMed  Google Scholar 

  16. Martin J, Dean D, Cochran D, Simpson J, Boyan B, Schwartz Z. Proliferation, differentiation, and protein synthesis of human osteoblast-like cells (MG63) cultured on previously used titanium surfaces. Clin Oral Implant Res. 1996;7:27–37.

    Article  CAS  Google Scholar 

  17. Yoo KC, Yoon CH, Kwon D, Hyun KH, Woo SJ, Kim RK, et al. Titanium dioxide induces apoptotic cell death through reactive oxygen species-mediated Fas upregulation and Bax activation. Int J Nanomed. 2012;15:1203–14.

    Google Scholar 

  18. Amna T, Hassan MS, Shin W-S, Van Ba H, Lee H-K, Khil M-S, et al. TiO2 nanorods via one-step electrospinning technique: a novel nanomatrix for mouse myoblasts adhesion and propagation. Colloids Surf B. 2013;101:424–9.

    Article  CAS  Google Scholar 

  19. Amna T, Shamshi Hassan M, Khil MS, Lee HK, Hwang I. Electrospun nanofibers of ZnO-TiO2 hybrid: characterization and potential as an extracellular scaffold for supporting myoblasts. Surf Interface Anal. 2014;46:72–6.

    Article  CAS  Google Scholar 

  20. Amna T, Hassan MS, Khil M-S, Hwang I. Interaction of magnetic cobalt based titanium dioxide nanofibers with muscle cells: in vitro cytotoxicity evaluation. J Solgel Sci Technol. 2014;69:338–44.

    Article  CAS  Google Scholar 

  21. Dykman L, Khlebtsov N. Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem Soc Rev. 2012;41:2256–82.

    Article  CAS  PubMed  Google Scholar 

  22. Kumar A, Zhang X, Liang XJ. Gold nanoparticles: emerging paradigm for targeted drug delivery system. Biotechnol Adv. 2013;31:593–606.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang D, Liu D, Zhang J, Fong C, Yang M. Gold nanoparticles stimulate differentiation and mineralization of primary osteoblasts through the ERK/MAPK signaling pathway. Mater Sci Eng, C. 2014;42:70–7.

    Article  Google Scholar 

  24. Ko WK, Heo DN, Moon HJ, Lee SJ, Bae MS, Lee JB, et al. The effect of gold nanoparticle size on osteogenic differentiation of adipose-derived stem cells. J Colloid Interface Sci. 2015;438:68–76.

    Article  CAS  PubMed  Google Scholar 

  25. Heo DN, Ko WK, Bae MS, Lee JB, Lee DW, Byun W, et al. Enhanced bone regeneration with a gold nanoparticle–hydrogel complex. J Mater Chem B. 2014;2:1584–93.

    Article  CAS  PubMed  Google Scholar 

  26. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13:4279–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lee SJ, Heo DN, Lee HR, Lee D, Yu SJ, Park SA, et al. Biofunctionalized titanium with anti-fouling resistance by grafting thermo-responsive polymer brushes for the prevention of peri-implantitis. J Mater Chem B. 2015;3:5161–5.

    Article  CAS  PubMed  Google Scholar 

  28. Heo DN, Ko WK, Lee HR, Lee SJ, Lee D, Um SH, et al. Titanium dental implants surface-immobilized with gold nanoparticles as osteoinductive agents for rapid osseointegration. J Colloid Interface Sci. 2016;469:129–37.

    Article  CAS  PubMed  Google Scholar 

  29. Younis AB, Haddad Y, Kosaristanova L, Smerkova K. Titanium dioxide nanoparticles: Recent progress in antimicrobial applications. Wiley Interdiscip Rev: Nanomed Nanobiotechnol. 2022;15:e1860.

    PubMed  Google Scholar 

  30. Amna T, Hassan MS. Nanofibers and nanotextured materials: design insights. Bact Mech Environ Adv. 2023;13:2891.

    CAS  Google Scholar 

  31. Amna T, Gharsan FN, Shang K, Hassan MS, Khil M-S, Hwang I. Electrospun twin fibers encumbered with intrinsic antioxidant activity as prospective bandage. Macromol Res. 2019;27:663–9.

    Article  CAS  Google Scholar 

  32. Algethami JS, Amna T, Alqarni SL, Alshahrani AA, Alhamami MA, Seliem AF, et al. Production of ceramics/metal oxide nanofibers via electrospinning: new insights into the photocatalytic and bactericidal mechanisms. Materials. 2023;16:5148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Keirouz A, Chung M, Kwon J, Fortunato G, Radacsi N. 2D and 3D electrospinning technologies for the fabrication of nanofibrous scaffolds for skin tissue engineering: a review. Wiley Interdiscip Rev: Nanomed Nanobiotechnol. 2020;12:e1626.

    PubMed  Google Scholar 

  34. Rahmati M, Mills DK, Urbanska AM, Saeb MR, Venugopal JR, Ramakrishna S, et al. Electrospinning for tissue engineering applications. Prog Mater Sci. 2021;117:100721.

    Article  CAS  Google Scholar 

  35. Zulkifli MZA, Nordin D, Shaari N, Kamarudin SK. Overview of electrospinning for tissue engineering applications. Polymers (Basel). 2023;15:2418.

    Article  CAS  PubMed  Google Scholar 

  36. Amna T, Alghamdi AA, Shang K, Hassan MS. Nigella sativa-coated hydroxyapatite scaffolds: synergetic cues to stimulate myoblasts differentiation and offset infections. Tissue Eng Regen Med. 2021;18:787–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Amna T, Van Ba H, Vaseem M, Hassan MS, Khil MS, Hahn Y, et al. Apoptosis induced by copper oxide quantum dots in cultured C2C12 cells via caspase 3 and caspase 7: a study on cytotoxicity assessment. Appl Microbiol Biotechnol. 2013;97:5545–53.

    Article  CAS  PubMed  Google Scholar 

  38. Amna T, Hassan MS, Sheikh FA, Seo HC, Kim HC, Alotaibi N, et al. Natural mulberry biomass fibers doped with silver as an antimicrobial textile: a new generation fabric. Text Res J. 2021;91:2581–7.

    Article  CAS  Google Scholar 

  39. Hassan MS, Amna T, Mishra A, Yun SI, Kim HC, Kim HY, et al. Fabrication, characterization and antibacterial effect of novel electrospun TiO2 nanorods on a panel of pathogenic bacteria. J Biomed Nanotechnol. 2012;8:394–404.

    Article  CAS  PubMed  Google Scholar 

  40. Ortiz-Benítez EA, Velázquez-Guadarrama N, Durán Figueroa NV, Quezada H, Olivares-Trejo JdJ. Antibacterial mechanism of gold nanoparticles on Streptococcus pneumoniae. Metallomics. 2019;11:1265–76.

    Article  PubMed  Google Scholar 

  41. Xu Y, Wen W, Wu JM. Titania nanowires functionalized polyester fabrics with enhanced photocatalytic and antibacterial performances. J Hazard Mater. 2018;343:285–97.

    Article  CAS  PubMed  Google Scholar 

  42. Jang YS, Amna T, Hassan MS, Kim HC, Kim JH, Baik SH, et al. Nanotitania/mulberry fibers as novel textile with anti-yellowing and intrinsic antimicrobial properties. Ceram Int. 2015;41:6274–80.

    Article  CAS  Google Scholar 

  43. Amna T. Bactericide gold decorated mulberry fibers for therapeutic and non-therapeutic tenacities. J Umm Al-Qura Univ Appl Sci. 2023;9:157–63.

  44. Amna T, Hassan MS, Barakat NA, Pandeya DR, Hong ST, Khil MS, et al. Antibacterial activity and interaction mechanism of electrospun zinc-doped titania nanofibers. Appl Microbiol Biotechnol. 2012;93:743–51.

    Article  CAS  PubMed  Google Scholar 

  45. Vimbela GV, Ngo SM, Fraze C, Yang L, Stout DA. Antibacterial properties and toxicity from metallic nanomaterials. Int J Nanomedicine. 2017;12:3941–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cui Y, Zhao Y, Tian Y, Zhang W, Lü X, Jiang X. The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli. Biomaterials. 2012;33:2327–33.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Deanship of Scientific Research at Najran University for funding this work, under the Research Groups Funding program grant code [NU/RG/SERC/12/45].

Author information

Authors and Affiliations

Authors

Contributions

TA and MSH: Conceptualization, methodology, formal analysis, investigation, resources, data curation, writing, original draft preparation, writing review and editing, JSA and AA: review and editing, AA: methodology, RA: formal analysis, FAS: writing review and editing, M-SKhil: resources, formal analysis and data curation.

Corresponding authors

Correspondence to Touseef Amna, M. Shamshi Hassan or Myung-Seob Khil.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Ethical statement

Not applicable as there is no use of animal models for the experiments. All authors approve the submission.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amna, T., Shamshi Hassan, M., Algethami, J.S. et al. Characterization of Gold-Enhanced Titania: Boosting Cell Proliferation and Combating Bacterial Infestation. Tissue Eng Regen Med 21, 711–721 (2024). https://doi.org/10.1007/s13770-024-00630-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-024-00630-8

Keywords

Navigation