Log in

Three-dimensional culture of mesenchymal stem cells

  • Review Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Mesenchymal stem cells (MSCs) are partially defined by their ability to differentiate into different tissues in vitro–including the bone, cartilage, and adipose tissue, as well as their ability to secrete bioactive factors in response to local microenvironmental cues. A significant amount of information exists on the biochemical, metabolic, and feedback mechanisms associated with MSC response, but the clinical applications of MSCs have been limited by changes in their in vitro capabilities that occur upon transplantation into the body. These inconsistencies occur because most preclinical studies on MSCs have been conducted in two-dimensional cell culture plates rather than in a three-dimensional (3D) cell culture system, which is more physiologically similar to the extracellular matrix found in the body. Thus, MSCs form thin monolayer devoid of vertical cell-cell interaction that prevents MSCs from colonizing. In this article, we review the history and characteristics of MSCs, related developments in 3D cell culture research, and some MSC-based clinical trials of MSCs in order to give a clear understanding of 3D cell culture systems in the field of tissue engineering with respect to MSC biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bianco P, Robey PG. Stem cells in tissue engineering. Nature 2001;414:118–121.

    CAS  PubMed  Google Scholar 

  2. Hodgkinson T, Yuan XF, Bayat A. Adult stem cells in tissue engineering. Expert Rev Med Devices 2009;6:621–640.

    PubMed  Google Scholar 

  3. Eberli D, Atala A. Tissue engineering using adult stem cells. Methods Enzymol 2006;420:287–302.

    CAS  PubMed  Google Scholar 

  4. Ko IK, Lee SJ, Atala A, Yoo JJ. In situ tissue regeneration through host stem cell recruitment. Exp Mol Med 2013;45:e57.

    Google Scholar 

  5. Celiz AD, Smith JG, Langer R, Anderson DG, Winkler DA, Barrett DA, et al. Materials for stem cell factories of the future. Nat Mater 2014;13:570–579.

    CAS  PubMed  Google Scholar 

  6. Jiang WC, Cheng YH, Yen MH, Chang Y, Yang VW, Lee OK. Cryo-chemical decellularization of the whole liver for mesenchymal stem cells-based functional hepatic tissue engineering. Biomaterials 2014;35:3607–3617.

    CAS  PubMed  Google Scholar 

  7. Hsu SH, Ho TT, Huang NC, Yao CL, Peng LH, Dai NT. Substrate-dependent modulation of 3D spheroid morphology self-assembled in mesenchymal stem cell-endothelial progenitor cell coculture. Biomaterials 2014;35:7295–7307.

    CAS  PubMed  Google Scholar 

  8. Kwon JS, Kim SW, Kwon DY, Park SH, Son AR, Kim JH, et al. In vivo osteogenic differentiation of human turbinate mesenchymal stem cells in an injectable in situ-forming hydrogel. Biomaterials 2014;35:5337–5346.

    CAS  PubMed  Google Scholar 

  9. Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 1997;276:71–74.

    CAS  PubMed  Google Scholar 

  10. Friedenstein AJ, Gorskaja JF, Kulagina NN. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol 1976;4:267–274.

    CAS  PubMed  Google Scholar 

  11. Ashton BA, Allen TD, Howlett CR, Eaglesom CC, Hattori A, Owen M. Formation of bone and cartilage by marrow stromal cells in diffusion chambers in vivo. Clin Orthop Relat Res Clin Orthop Relat Res 1980;(151):294–307.

    PubMed  Google Scholar 

  12. Bab I, Ashton BA, Gazit D, Marx G, Williamson MC, Owen ME. Kinetics and differentiation of marrow stromal cells in diffusion chambers in vivo. J Cell Sci 1986;84:139–151.

    CAS  PubMed  Google Scholar 

  13. Chamberlain G, Fox J, Ashton B, Middleton J. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 2007;25:2739–2749.

    CAS  PubMed  Google Scholar 

  14. Campagnoli C, Roberts IA, Kumar S, Bennett PR, Bellantuono I, Fisk NM. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood 2001;98:2396–2402.

    CAS  PubMed  Google Scholar 

  15. In’t Anker PS, Scherjon SA, Kleijburg-van der Keur C, Noort WA, Claas FH, Willemze R, et al. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood 2003;102:1548–1549.

    Google Scholar 

  16. Nakahara H, Dennis JE, Bruder SP, Haynesworth SE, Lennon DP, Caplan AI. In vitro differentiation of bone and hypertrophic cartilage from periosteal-derived cells. Exp Cell Res 1991;195:492–503.

    CAS  PubMed  Google Scholar 

  17. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 2002;13:4279–4295.

    PubMed Central  CAS  PubMed  Google Scholar 

  18. in’t Anker PS, Noort WA, Scherjon SA, Kleijburg-van der Keur C, Kruisselbrink AB, van Bezooijen RL, et al. Mesenchymal stem cells in human second-trimester bone marrow, liver, lung, and spleen exhibit a similar immunophenotype but a heterogeneous multilineage differentiation potential. Haematologica 2003;88:845–852.

    Google Scholar 

  19. Haynesworth SE, Baber MA, Caplan AI. Cell surface antigens on human marrow-derived mesenchymal cells are detected by monoclonal antibodies. Bone 1992;13:69–80.

    CAS  PubMed  Google Scholar 

  20. Galmiche MC, Koteliansky VE, Brière J, Hervé P, Charbord P. Stromal cells from human long-term marrow cultures are mesenchymal cells that differentiate following a vascular smooth muscle differentiation pathway. Blood 1993;82:66–76.

    CAS  PubMed  Google Scholar 

  21. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999;284:143–147.

    CAS  PubMed  Google Scholar 

  22. Sordi V, Malosio ML, Marchesi F, Mercalli A, Melzi R, Giordano T, et al. Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets. Blood 2005;106:419–427.

    CAS  PubMed  Google Scholar 

  23. Lv FJ, Tuan RS, Cheung KM, Leung VY. Concise review: the surface markers and identity of human mesenchymal stem cells. Stem Cells 2014;32:1408–1419.

    CAS  PubMed  Google Scholar 

  24. Peister A, Mellad JA, Larson BL, Hall BM, Gibson LF, Prockop DJ. Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential. Blood 2004;103:1662–1668.

    CAS  PubMed  Google Scholar 

  25. Javazon EH, Beggs KJ, Flake AW. Mesenchymal stem cells: paradoxes of passaging. Exp Hematol 2004;32:414–425.

    CAS  PubMed  Google Scholar 

  26. Baddoo M, Hill K, Wilkinson R, Gaupp D, Hughes C, Kopen GC, et al. Characterization of mesenchymal stem cells isolated from murine bone marrow by negative selection. J Cell Biochem 2003;89:1235–1249.

    CAS  PubMed  Google Scholar 

  27. Murphy MB, Moncivais K, Caplan AI. Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine. Exp Mol Med 2013;45:e54.

    Google Scholar 

  28. Haynesworth SE, Baber MA, Caplan AI. Cytokine expression by human marrow-derived mesenchymal progenitor cells in vitro: effects of dexamethasone and IL-1 alpha. J Cell Physiol 1996;166:585–592.

    CAS  PubMed  Google Scholar 

  29. Holgate ST, Davies DE, Lackie PM, Wilson SJ, Puddicombe SM, Lordan JL. Epithelial-mesenchymal interactions in the pathogenesis of asthma. J Allergy Clin Immunol 2000;105(2 Pt 1):193–204.

    CAS  PubMed  Google Scholar 

  30. Doorn J, van de Peppel J, van Leeuwen JP, Groen N, van Blitterswijk CA, de Boer J. Pro-osteogenic trophic effects by PKA activation in human mesenchymal stromal cells. Biomaterials 2011;32:6089–6098.

    CAS  PubMed  Google Scholar 

  31. Caplan AI, Bruder SP. Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol Med 2001;7:259–264.

    CAS  PubMed  Google Scholar 

  32. Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol 2008;8:726–736.

    CAS  PubMed  Google Scholar 

  33. Weiss DJ, Bertoncello I, Borok Z, Kim C, Panoskaltsis-Mortari A, Reynolds S, et al. Stem cells and cell therapies in lung biology and lung diseases. Proc Am Thorac Soc 2011;8:223–272.

    PubMed Central  PubMed  Google Scholar 

  34. Cselenyák A, Pankotai E, Horváth EM, Kiss L, Lacza Z. Mesenchymal stem cells rescue cardiomyoblasts from cell death in an in vitro ischemia model via direct cell-to-cell connections. BMC Cell Biol 2010;11:29.

    PubMed Central  PubMed  Google Scholar 

  35. Mitsiades CS, Mitsiades N, Poulaki V, Schlossman R, Akiyama M, Chauhan D, et al. Activation of NF-kappaB and upregulation of intracellular anti-apoptotic proteins via the IGF-1/Akt signaling in human multiple myeloma cells: therapeutic implications. Oncogene 2002;21:5673–5683.

    CAS  PubMed  Google Scholar 

  36. Gnecchi M, He H, Noiseux N, Liang OD, Zhang L, Morello F, et al. Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J 2006;20:661–669.

    CAS  PubMed  Google Scholar 

  37. Nijnik A, Hancock RE. The roles of cathelicidin LL-37 in immune defences and novel clinical applications. Curr Opin Hematol 2009;16:41–47.

    CAS  PubMed  Google Scholar 

  38. Frohm Nilsson M, Sandstedt B, Sørensen O, Weber G, Borregaard N, Ståhle-Bäckdahl M. The human cationic antimicrobial protein (hCAP18), a peptide antibiotic, is widely expressed in human squamous epithelia and colocalizes with interleukin-6. Infect Immun 1999;67:2561–2566.

    PubMed Central  CAS  PubMed  Google Scholar 

  39. Coffelt SB, Marini FC, Watson K, Zwezdaryk KJ, Dembinski JL, LaMarca HL, et al. The pro-inflammatory peptide LL-37 promotes ovarian tumor progression through recruitment of multipotent mesenchymal stromal cells. Proc Natl Acad Sci U S A 2009;106:3806–3811.

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Németh K, Leelahavanichkul A, Yuen PS, Mayer B, Parmelee A, Doi K, et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med 2009;15:42–49.

    PubMed Central  PubMed  Google Scholar 

  41. Fuchs E, Tumbar T, Guasch G. Socializing with the neighbors: stem cells and their niche. Cell 2004;116:769–778.

    CAS  PubMed  Google Scholar 

  42. Hong JK, Kwon SM. Application of tissue engineering in stem cell therapy. J Biomed Sci Eng 2014;7:67–74.

    CAS  Google Scholar 

  43. Naderi H, Matin MM, Bahrami AR. Review paper: critical issues in tissue engineering: biomaterials, cell sources, angiogenesis, and drug delivery systems. J Biomater Appl 2011;26:383–417.

    CAS  PubMed  Google Scholar 

  44. Langer R, Vacanti JP. Tissue engineering. Science 1993;260:920–926.

    CAS  PubMed  Google Scholar 

  45. Zou L, Luo Y, Chen M, Wang G, Ding M, Petersen CC, et al. A simple method for deriving functional MSCs and applied for osteogenesis in 3D scaffolds. Sci Rep 2013;3:2243.

    PubMed Central  PubMed  Google Scholar 

  46. Park MH, Yu Y, Moon HJ, Ko du Y, Kim HS, Lee H, et al. 3D culture of tonsil-derived mesenchymal stem cells in poly(ethylene glycol)-poly(L-alanine-co-L-phenyl alanine) thermogel. Adv Healthc Mater 2014;3:1782–1791.

    CAS  PubMed  Google Scholar 

  47. Jung H, Park JS, Yeom J, Selvapalam N, Park KM, Oh K, et al. 3D tissue engineered supramolecular hydrogels for controlled chondrogenesis of human mesenchymal stem cells. Biomacromolecules 2014;15:707–714.

    CAS  PubMed  Google Scholar 

  48. Teh TK, Toh SL, Goh JC. Aligned fibrous scaffolds for enhanced mechanoresponse and tenogenesis of mesenchymal stem cells. Tissue Eng Part A 2013;19:1360–1372.

    CAS  PubMed  Google Scholar 

  49. Kang Y, Kim S, Bishop J, Khademhosseini A, Yang Y. The osteogenic differentiation of human bone marrow MSCs on HUVEC-derived ECM and ß-TCP scaffold. Biomaterials 2012;33:6998–7007.

    PubMed Central  CAS  PubMed  Google Scholar 

  50. Moroz A, Bittencourt RA, Almeida RP, Felisbino SL, Deffune E. Platelet lysate 3D scaffold supports mesenchymal stem cell chondrogenesis: an improved approach in cartilage tissue engineering. Platelets 2013;24:219–225.

    CAS  PubMed  Google Scholar 

  51. Lee J, Cuddihy MJ, Kotov NA. Three-dimensional cell culture matrices: state of the art. Tissue Eng Part B Rev 2008;14:61–86.

    CAS  PubMed  Google Scholar 

  52. Hong JK, Madihally SV. Next generation of electrosprayed fibers for tissue regeneration. Tissue Eng Part B Rev 2011;17:125–142.

    PubMed Central  CAS  PubMed  Google Scholar 

  53. Garg T, Goyal AK. Biomaterial-based scaffolds—current status and future directions. Expert Opin Drug Deliv 2014;11:767–789.

    CAS  PubMed  Google Scholar 

  54. Rossi F, van Griensven M. Polymer functionalization as a powerful tool to improve scaffold performances. Tissue Eng Part A 2014;20:2043–2051.

    PubMed  Google Scholar 

  55. Billiet T, Vandenhaute M, Schelfhout J, Van Vlierberghe S, Dubruel P. A review of trends and limitations in hydrogel-rapid prototy** for tissue engineering. Biomaterials 2012;33:6020–6041.

    CAS  PubMed  Google Scholar 

  56. Dhaliwal A. 3D Cell Culture: A Review. Mater Methods 2012;2:162.

    Google Scholar 

  57. Lawrence BJ, Madihally SV. Cell colonization in degradable 3D porous matrices. Cell Adh Migr 2008;2:9–16.

    PubMed Central  PubMed  Google Scholar 

  58. Balgude AP, Yu X, Szymanski A, Bellamkonda RV. Agarose gel stiffness determines rate of DRG neurite extension in 3D cultures. Biomaterials 2001;22:1077–1084.

    CAS  PubMed  Google Scholar 

  59. Hong JK, Madihally SV. Three-dimensional scaffold of electrosprayed fibers with large pore size for tissue regeneration. Acta Biomater 2010;6:4734–4742.

    PubMed Central  CAS  PubMed  Google Scholar 

  60. Dar A, Shachar M, Leor J, Cohen S. Optimization of cardiac cell seeding and distribution in 3D porous alginate scaffolds. Biotechnol Bioeng 2002;80:305–312.

    CAS  PubMed  Google Scholar 

  61. Zeltinger J, Sherwood JK, Graham DA, Müeller R, Griffith LG. Effect of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition. Tissue Eng 2001;7:557–572.

    CAS  PubMed  Google Scholar 

  62. Alimperti S, Lei P, Wen Y, Tian J, Campbell AM, Andreadis ST. Serum-free spheroid suspension culture maintains mesenchymal stem cell proliferation and differentiation potential. Biotechnol Prog 2014;30:974–983.

    CAS  PubMed  Google Scholar 

  63. Welter JF, Penick KJ, Solchaga LA. Assessing adipogenic potential of mesenchymal stem cells: a rapid three-dimensional culture screening technique. Stem Cells Int 2013;2013:806525.

    PubMed Central  PubMed  Google Scholar 

  64. Teixeira GQ, Barrias CC, Lourenço AH, Gonçalves RM. A multicompartment holder for spinner flasks improves expansion and osteogenic differentiation of mesenchymal stem cells in three-dimensional scaffolds. Tissue Eng Part C Methods 2014;20:984–993.

    CAS  PubMed  Google Scholar 

  65. Murphy KC, Fang SY, Leach JK. Human mesenchymal stem cell spheroids in fibrin hydrogels exhibit improved cell survival and potential for bone healing. Cell Tissue Res 2014;357:91–99.

    PubMed Central  CAS  PubMed  Google Scholar 

  66. Jung O, Hanken H, Smeets R, Hartjen P, Friedrich RE, Schwab B, et al. Osteogenic differentiation of mesenchymal stem cells in fibrin-hydroxyapatite matrix in a 3-dimensional mesh scaffold. In Vivo 2014;28:477–482.

    CAS  PubMed  Google Scholar 

  67. Du M, Liang H, Mou C, Li X, Sun J, Zhuang Y, et al. Regulation of human mesenchymal stem cells differentiation into chondrocytes in extracellular matrix-based hydrogel scaffolds. Colloids Surf B Biointerfaces 2014;114:316–323.

    CAS  PubMed  Google Scholar 

  68. Guo L, Ge J, Zhou Y, Wang S, Zhao RC, Wu Y. Three-dimensional spheroid-cultured mesenchymal stem cells devoid of embolism attenuate brain stroke injury after intra-arterial injection. Stem Cells Dev 2014;23:978–989.

    PubMed Central  CAS  PubMed  Google Scholar 

  69. Park J, Park S, Ryu S, Bhang SH, Kim J, Yoon JK, et al. Graphene-regulated cardiomyogenic differentiation process of mesenchymal stem cells by enhancing the expression of extracellular matrix proteins and cell signaling molecules. Adv Healthc Mater 2014;3:176–181.

    CAS  PubMed  Google Scholar 

  70. Rampichová M, Chvojka J, Buzgo M, Prosecká E, Mikeš P, Vysloužilová L, et al. Elastic three-dimensional poly (e-caprolactone) nanofibre scaffold enhances migration, proliferation and osteogenic differentiation of mesenchymal stem cells. Cell Prolif 2013;46:23–37.

    PubMed  Google Scholar 

  71. Wang ZY, Teo EY, Chong MS, Zhang QY, Lim J, Zhang ZY, et al. Biomimetic three-dimensional anisotropic geometries by uniaxial stretch of poly(e-caprolactone) films for mesenchymal stem cell proliferation, alignment, and myogenic differentiation. Tissue Eng Part C Methods 2013;19:538–549.

    PubMed Central  PubMed  Google Scholar 

  72. Her GJ, Wu HC, Chen MH, Chen MY, Chang SC, Wang TW. Control of three-dimensional substrate stiffness to manipulate mesenchymal stem cell fate toward neuronal or glial lineages. Acta Biomater 2013;9:5170–5180.

    CAS  PubMed  Google Scholar 

  73. Guerrero J, Catros S, Derkaoui SM, Lalande C, Siadous R, Bareille R, et al. Cell interactions between human progenitor-derived endothelial cells and human mesenchymal stem cells in a three-dimensional macroporous polysaccharide-based scaffold promote osteogenesis. Acta Biomater 2013;9:8200–8213.

    CAS  PubMed  Google Scholar 

  74. Chen X, Thibeault SL. Cell-cell interaction between vocal fold fibroblasts and bone marrow mesenchymal stromal cells in three-dimensional hyaluronan hydrogel. J Tissue Eng Regen Med 2013 May 8 [Epub]. http://dx.doi.org/10.1002/term.1757.

    Google Scholar 

  75. Mohand-Kaci F, Assoul N, Martelly I, Allaire E, Zidi M. Optimized hyaluronic acid-hydrogel design and culture conditions for preservation of mesenchymal stem cell properties. Tissue Eng Part C Methods 2013;19:288–298.

    PubMed Central  CAS  PubMed  Google Scholar 

  76. Ceccaldi C, Bushkalova R, Alfarano C, Lairez O, Calise D, Bourin P, et al. Evaluation of polyelectrolyte complex-based scaffolds for mesenchymal stem cell therapy in cardiac ischemia treatment. Acta Biomater 2014;10:901–911.

    CAS  PubMed  Google Scholar 

  77. Simpson DL, Dudley SC Jr. Modulation of human mesenchymal stem cell function in a three-dimensional matrix promotes attenuation of adverse remodelling after myocardial infarction. J Tissue Eng Regen Med 2013;7:192–202.

    CAS  PubMed  Google Scholar 

  78. Yeh HY, Liu BH, Sieber M, Hsu SH. Substrate-dependent gene regulation of self-assembled human MSC spheroids on chitosan membranes. BMC Genomics 2014;15:10.

    PubMed Central  PubMed  Google Scholar 

  79. Goel A, Sangwan SS, Siwach RC, Ali AM. Percutaneous bone marrow grafting for the treatment of tibial non-union. Injury 2005;36:203–206.

    PubMed  Google Scholar 

  80. Hernigou P, Daltro G, Filippini P, Mukasa MM, Manicom O. Percutaneous implantation of autologous bone marrow osteoprogenitor cells as treatment of bone avascular necrosis related to sickle cell disease. Open Orthop J 2008;2:62–65.

    PubMed Central  PubMed  Google Scholar 

  81. Gan Y, Dai K, Zhang P, Tang T, Zhu Z, Lu J. The clinical use of enriched bone marrow stem cells combined with porous beta-tricalcium phosphate in posterior spinal fusion. Biomaterials 2008;29:3973–3982.

    CAS  PubMed  Google Scholar 

  82. Zhang Y, Wang F, Chen J, Ning Z, Yang L. Bone marrow-derived mesenchymal stem cells versus bone marrow nucleated cells in the treatment of chondral defects. Int Orthop 2012;36:1079–1086.

    PubMed Central  PubMed  Google Scholar 

  83. Davatchi F, Abdollahi BS, Mohyeddin M, Shahram F, Nikbin B. Mesenchymal stem cell therapy for knee osteoarthritis. Preliminary report of four patients. Int J Rheum Dis 2011;14:211–215.

    PubMed  Google Scholar 

  84. Ganey T, Hutton WC, Moseley T, Hedrick M, Meisel HJ. Intervertebral disc repair using adipose tissue-derived stem and regenerative cells: experiments in a canine model. Spine (Phila Pa 1976) 2009;34:2297–2304.

    Google Scholar 

  85. Cashman TJ, Gouon-Evans V, Costa KD. Mesenchymal stem cells for cardiac therapy: practical challenges and potential mechanisms. Stem Cell Rev 2013;9:254–265.

    CAS  PubMed  Google Scholar 

  86. Pittenger MF, Martin BJ. Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res 2004;95:9–20.

    CAS  PubMed  Google Scholar 

  87. Frantz S, Bauersachs J, Ertl G. Post-infarct remodelling: contribution of wound healing and inflammation. Cardiovasc Res 2009;81:474–481.

    PubMed Central  CAS  PubMed  Google Scholar 

  88. Hackett TL, Knight DA, Sin DD. Potential role of stem cells in management of COPD. Int J Chron Obstruct Pulmon Dis 2010;5:81–88.

    PubMed Central  PubMed  Google Scholar 

  89. Murphy MB, Blashki D, Buchanan RM, Yazdi IK, Ferrari M, Simmons PJ, et al. Adult and umbilical cord blood-derived platelet-rich plasma for mesenchymal stem cell proliferation, chemotaxis, and cryo-preservation. Biomaterials 2012;33:5308–5316.

    CAS  PubMed  Google Scholar 

  90. Rasulov MF, Vasilchenkov AV, Onishchenko NA, Krasheninnikov ME, Kravchenko VI, Gorshenin TL, et al. First experience of the use bone marrow mesenchymal stem cells for the treatment of a patient with deep skin burns. Bull Exp Biol Med 2005;139:141–144.

    CAS  PubMed  Google Scholar 

  91. Yamout B, Hourani R, Salti H, Barada W, El-Hajj T, Al-Kutoubi A, et al. Bone marrow mesenchymal stem cell transplantation in patients with multiple sclerosis: a pilot study. J Neuroimmunol 2010;227:185–189.

    CAS  PubMed  Google Scholar 

  92. Venkataramana NK, Kumar SK, Balaraju S, Radhakrishnan RC, Bansal A, Dixit A, et al. Open-labeled study of unilateral autologous bone-marrow-derived mesenchymal stem cell transplantation in Parkinson’s disease. Transl Res 2010;155:62–70.

    CAS  PubMed  Google Scholar 

  93. Savitz SI, Misra V, Kasam M, Juneja H, Cox CS Jr, Alderman S, et al. Intravenous autologous bone marrow mononuclear cells for ischemic stroke. Ann Neurol 2011;70:59–69.

    PubMed  Google Scholar 

  94. Chen CJ, Ou YC, Liao SL, Chen WY, Chen SY, Wu CW, et al. Transplantation of bone marrow stromal cells for peripheral nerve repair. Exp Neurol 2007;204:443–453.

    CAS  PubMed  Google Scholar 

  95. Aid TAE, Alseedy AI, Shams AF, Khalil AAE. Investigation of smoking effects on percutaneous autologous bone marrow injection for nonunion patients. J Am Sci 2014;10:124–128.

    Google Scholar 

  96. Thakker R, Yang P. Mesenchymal stem cell therapy for cardiac repair. Curr Treat Options Cardiovasc Med 2014;16:323.

    PubMed Central  PubMed  Google Scholar 

  97. McKay RG, Pfeffer MA, Pasternak RC, Markis JE, Come PC, Nakao S, et al. Left ventricular remodeling after myocardial infarction: a corollary to infarct expansion. Circulation 1986;74:693–702.

    CAS  PubMed  Google Scholar 

  98. Chen SL, Fang WW, Ye F, Liu YH, Qian J, Shan SJ, et al. Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am J Cardiol 2004;94:92–95.

    PubMed  Google Scholar 

  99. Weiss DJ, Casaburi R, Flannery R, LeRoux-Williams M, Tashkin DP. A placebo-controlled, randomized trial of mesenchymal stem cells in COPD. Chest 2013;143:1590–1598.

    CAS  PubMed  Google Scholar 

  100. Falanga V, Iwamoto S, Chartier M, Yufit T, Butmarc J, Kouttab N, et al. Autologous bone marrow-derived cultured mesenchymal stem cells delivered in a fibrin spray accelerate healing in murine and human cutaneous wounds. Tissue Eng 2007;13:1299–1312.

    CAS  PubMed  Google Scholar 

  101. Bai L, Lennon DP, Eaton V, Maier K, Caplan AI, Miller SD, et al. Human bone marrow-derived mesenchymal stem cells induce Th2-polarized immune response and promote endogenous repair in animal models of multiple sclerosis. Glia 2009;57:1192–1203.

    PubMed Central  PubMed  Google Scholar 

  102. Banglmaier RF, Sander EA, VandeVord PJ. Induction and quantification of collagen fiber alignment in a three-dimensional hydroxyapatite-collagen composite scaffold. Acta Biomater 2015;17:26–35.

    CAS  PubMed  Google Scholar 

  103. Pezeshki-Modaress M, Mirzadeh H, Zandi M. Gelatin-GAG electrospun nanofibrous scaffold for skin tissue engineering: fabrication and modeling of process parameters. Mater Sci Eng C Mater Biol Appl 2015;48:704–712.

    CAS  PubMed  Google Scholar 

  104. Zheng L, Hu X, Huang Y, Xu G, Yang J, Li L. In vivo bioengineered ovarian tumors based on collagen, matrigel, alginate and agarose hydrogels: a comparative study. Biomed Mater 2015;10:015016.

    PubMed  Google Scholar 

  105. Zhang BX, Zhang ZL, Lin AL, Wang H, Pilia M, Ong JL, et al. Silk Fibroin Scaffolds Promote Formation of the Ex Vivo Niche for Salivary Gland Epithelial Cell Growth, Matrix Formation, and Retention of Differentiated Function. Tissue Eng Part A 2015;21:1611–1620.

    CAS  PubMed  Google Scholar 

  106. Weber M, Gonzalez de Torre I, Moreira R, Frese J, Oedekoven C, Alonso M, et al. Multiple-Step Injection Molding for Fibrin-Based Tissue-Engineered Heart Valves. Tissue Eng Part C Methods 2015 Mar 31 [Epub]. http://dx.doi.org/10.1089/ten.tec.2014.0396.

    Google Scholar 

  107. Maruyama Y, Oiki S, Takase R, Mikami B, Murata K, Hashimoto W. Metabolic Fate of Unsaturated Glucuronic/Iduronic Acids from Glycosaminoglycans: molecular identification and structure determination of streptococcal isomerase and dehydrogenase. J Biol Chem 2015;290:6281–6292.

    CAS  PubMed  Google Scholar 

  108. Hoveizi E, Massumi M, Ebrahimi-Barough S, Tavakol S, Ai J. Differential effect of Activin A and WNT3a on definitive endoderm differentiation on electrospun nanofibrous PCL scaffold. Cell Biol Int 2015;39:591–599.

    CAS  PubMed  Google Scholar 

  109. Sridhar BV, Brock JL, Silver JS, Leight JL, Randolph MA, Anseth KS. Development of a cellularly degradable PEG hydrogel to promote articular cartilage extracellular matrix deposition. Adv Healthc Mater 2015;4:702–713.

    CAS  PubMed  Google Scholar 

  110. Paskiabi FA, Mirzaei E, Amani A, Shokrgozar MA, Saber R, Faridi-Majidi R. Optimizing parameters on alignment of PCL/PGA nanofibrous scaffold: an artificial neural networks approach. Int J Biol Macromol 2014 Oct 27 [Epub]. http://dx.doi.org/10.1016/j.ijbiomac.2014.10.040.

    Google Scholar 

  111. Peng S, Liu HX, Ko CY, Yang SR, Hung WL, Chu IM. A hydrolytically-tunable photocrosslinked PLA-PEG-PLA/PCL-PEG-PCL dual-component hydrogel that enhances matrix deposition of encapsulated chondrocytes. J Tissue Eng Regen Med 2014 Nov 27 [Epub]. http://dx.doi.org/10.1002/term.1963.

    Google Scholar 

  112. Awidi A, Ababneh N, Alkilani H, Salah B, Nazzal S, Zoghool M, et al. Evaluation of the growth and osteogenic differentiation of ASCs cultured with PL and seeded on PLGA scaffolds. J Mater Sci Mater Med 2015;26:84.

    PubMed  Google Scholar 

  113. Alió del Barrio JL, Chiesa M, Gallego Ferrer G, Garagorri N, Briz N, Fernandez-Delgado J, et al. Biointegration of corneal macroporous membranes based on poly(ethyl acrylate) copolymers in an experimental animal model. J Biomed Mater Res A 2015;103:1106–1118.

    PubMed  Google Scholar 

  114. Shevach M, Maoz BM, Feiner R, Shapira A, Dvir T. Nanoengineering gold particle composite fibers for cardiac tissue engineering. J Mater Chem B 2013;1:5210–5217.

    CAS  Google Scholar 

  115. Li N, Zhang Q, Gao S, Song Q, Huang R, Wang L, et al. Three-dimensional graphene foam as a biocompatible and conductive scaffold for neural stem cells. Sci Rep 2013;3:1604.

    PubMed Central  PubMed  Google Scholar 

  116. Dinescu S, Ionita M, Pandele AM, Galateanu B, Iovu H, Ardelean A, et al. In vitro cytocompatibility evaluation of chitosan/graphene oxide 3D scaffold composites designed for bone tissue engineering. Biomed Mater Eng 2014;24:2249–2256.

    CAS  PubMed  Google Scholar 

  117. Abarrategi A, Gutiérrez MC, Moreno-Vicente C, Hortigüela MJ, Ramos V, López-Lacomba JL, et al. Multiwall carbon nanotube scaffolds for tissue engineering purposes. Biomaterials 2008;29:94–102.

    CAS  PubMed  Google Scholar 

  118. Cho YS, Kim BS, You HK, Cho YS. A novel technique for scaffold fabrication: SLUP (salt leaching using powder). Curr Appl Phys 2014;14:317–377.

    Google Scholar 

  119. Thadavirul N, Pavasant P, Supaphol P. Development of polycaprolactone porous scaffolds by combining solvent casting, particulate leaching, and polymer leaching techniques for bone tissue engineering. J Biomed Mater Res A 2014;102:3379–3392.

    PubMed  Google Scholar 

  120. Colosi C, Costantini M, Barbetta A, Pecci R, Bedini R, Dentini M. Morphological comparison of PVA scaffolds obtained by gas foaming and microfluidic foaming techniques. Langmuir 2013;29:82–91.

    CAS  PubMed  Google Scholar 

  121. Oh SH, Kang SG, Lee JH. Degradation behavior of hydrophilized PLGA scaffolds prepared by melt-molding particulate-leaching method: comparison with control hydrophobic one. J Mater Sci Mater Med 2006;17:131–137.

    CAS  PubMed  Google Scholar 

  122. Borden M, Attawia M, Laurencin CT. The sintered microsphere matrix for bone tissue engineering: in vitro osteoconductivity studies. J Biomed Mater Res 2002;61:421–429.

    CAS  PubMed  Google Scholar 

  123. Gomes ME, Holtorf HL, Reis RL, Mikos AG. Influence of the porosity of starch-based fiber mesh scaffolds on the proliferation and osteogenic differentiation of bone marrow stromal cells cultured in a flow perfusion bioreactor. Tissue Eng 2006;12:801–809.

    CAS  PubMed  Google Scholar 

  124. Yoshimoto H, Shin YM, Terai H, Vacanti JP. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 2003;24:2077–2082.

    CAS  PubMed  Google Scholar 

  125. Liu X, Ma PX. Phase separation, pore structure, and properties of nanofibrous gelatin scaffolds. Biomaterials 2009;30:4094–4103.

    PubMed Central  CAS  PubMed  Google Scholar 

  126. Matson JB, Stupp SI. Self-assembling peptide scaffolds for regenerative medicine. Chem Commun (Camb) 2012;48:26–33.

    CAS  Google Scholar 

  127. Dias AM, Marceneiro S, Braga ME, Coelho JF, Ferreira AG, Simões PN, et al. Phosphonium-based ionic liquids as modifiers for biomedical grade poly(vinyl chloride). Acta Biomater 2012;8:1366–1379.

    CAS  PubMed  Google Scholar 

  128. Montjovent MO, Mathieu L, Hinz B, Applegate LL, Bourban PE, Zambelli PY, et al. Biocompatibility of bioresorbable poly(L-lactic acid) composite scaffolds obtained by supercritical gas foaming with human fetal bone cells. Tissue Eng 2005;11:1640–1649.

    CAS  PubMed  Google Scholar 

  129. Bao L, Yang W, Mao X, Mou S, Tang S. Agar/collagen membrane as skin dressing for wounds. Biomed Mater 2008;3:044108.

    PubMed  Google Scholar 

  130. Lin L, Marchant RE, Zhu J, Kottke-Marchant K. Extracellular matrix-mimetic poly(ethylene glycol) hydrogels engineered to regulate smooth muscle cell proliferation in 3-D. Acta Biomater 2014;10:5106–5115.

    CAS  PubMed  Google Scholar 

  131. Sahoo SK, Panda AK, Labhasetwar V. Characterization of porous PLGA/PLA microparticles as a scaffold for three dimensional growth of breast cancer cells. Biomacromolecules 2005;6:1132–1139.

    CAS  PubMed  Google Scholar 

  132. Kim SH, Kim JW, Kim DH, Han SH, Weitz DA. Polymersomes containing a hydrogel network for high stability and controlled release. Small 2013;9:124–131.

    CAS  PubMed  Google Scholar 

  133. Pillay S, Pillay V, Choonara YE, Naidoo D, Khan RA, du Toit LC, et al. Design, biometric simulation and optimization of a nano-enabled scaffold device for enhanced delivery of dopamine to the brain. Int J Pharm 2009;382:277–290.

    CAS  PubMed  Google Scholar 

  134. De Waele J, Reekmans K, Daans J, Goossens H, Berneman Z, Ponsaerts P. 3D culture of murine neural stem cells on decellularized mouse brain sections. Biomaterials 2015;41:122–131.

    PubMed  Google Scholar 

  135. Zhu M, Li K, Zhu Y, Zhang J, Ye X. 3D-printed hierarchical scaffold for localized isoniazid/rifampin drug delivery and osteoarticular tuberculosis therapy. Acta Biomater 2015;16:145–155.

    CAS  PubMed  Google Scholar 

  136. Korpela J, Kokkari A, Korhonen H, Malin M, Närhi T, Seppälä J. Biodegradable and bioactive porous scaffold structures prepared using fused deposition modeling. J Biomed Mater Res B Appl Biomater 2013;101:610–619.

    PubMed  Google Scholar 

  137. Boland T, Xu T, Damon B, Cui X. Application of inkjet printing to tissue engineering. Biotechnol J 2006;1:910–917.

    CAS  PubMed  Google Scholar 

  138. Vozzi G, Flaim C, Ahluwalia A, Bhatia S. Fabrication of PLGA scaffolds using soft lithography and microsyringe deposition. Biomaterials 2003;24:2533–2540.

    CAS  PubMed  Google Scholar 

  139. Lee JH, Lee JY, Yang SH, Lee EJ, Kim HW. Carbon nanotube-collagen three-dimensional culture of mesenchymal stem cells promotes expression of neural phenotypes and secretion of neurotrophic factors. Acta Biomater 2014;10:4425–4436.

    CAS  PubMed  Google Scholar 

  140. Crowder SW, Prasai D, Rath R, Balikov DA, Bae H, Bolotin KI, et al. Three-dimensional graphene foams promote osteogenic differentiation of human mesenchymal stem cells. Nanoscale 2013;5:4171–4176.

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Mo Kwon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, J.K., Yun, J., Kim, H. et al. Three-dimensional culture of mesenchymal stem cells. Tissue Eng Regen Med 12, 211–221 (2015). https://doi.org/10.1007/s13770-015-0005-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-015-0005-7

Key Words

Navigation