Log in

Nanostructured-based WO3 photocatalysts: recent development, activity enhancement, perspectives and applications for wastewater treatment

  • Review
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

The growth of highly ordered architectures of semiconductor metallic oxide photocatalyst has acknowledged great consideration due to natural growth along with exceptional morphology properties and potential application ways to resolve the problem of freshwater shortages in this world. Tungsten trioxide (WO3) is a well-known semiconductor photocatalyst due to its better response in solar spectrum, fine metal interactions, mechanical strength, high efficiency, harmlessness and cost-effectiveness. This review focuses on a precise and overall description of the recent literature relating pure and doped/composite WO3 catalyst, photocatalytic enhancement mechanism. Moreover, it will also elaborate the experimental conditions used photocatalyst synthesis processes, optimization of the parameters affecting the degradation efficiency of various dyes. Furthermore, strategies for improving photocatalytic activity of WO3 like metal do**, semiconductor coupling, metal sulfides and metal nitrides coupling are systematically summarized and highlighted. After this, future perspectives about advancement and applications are reviewed. It is expected that this review article could offer strategies for designing novel WO3-based photocatalysts which can have promising prospects of multifunctional applications to meet the imperative demands of highly efficient solar energy conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adhikari S, Sarkar D (2015a) Preparation of mixed semiconductors for methyl orange degradation. J Nanomater 2015:269019

    Google Scholar 

  • Adhikari S, Sarkar D (2015b) Metal oxide semiconductors for dye degradation. Mater Res Bull 72:220–228

    Article  CAS  Google Scholar 

  • Adhikari R et al (2013) Microwave assisted hydrothermal synthesis of Ag/AgCl/WO3 photocatalyst and its photocatalytic activity under simulated solar light. J Solid State Chem 197:560–565

    Article  CAS  Google Scholar 

  • Bankura KP et al (2012) Synthesis, characterization and antimicrobial activity of dextran stabilized silver nanoparticles in aqueous medium. Carohydr Polym 89(4):1159–1165

    Article  CAS  Google Scholar 

  • Dinçer F et al (2016) Ozonation of reactive orange 122 using La3+ -doped WO3/TiO2/Sep photocatalyst. Ozone Sci Eng 38(4):1–11

    Article  Google Scholar 

  • Alfaro SO, Martínez-de La Cruz A (2010) Synthesis, characterization and visible-light photocatalytic properties of Bi2WO6 and Bi2 W2O9 obtained by co-precipitation method. Appl Catal A 383(1):128–133

    Article  CAS  Google Scholar 

  • Aslam I et al (2014a) Synthesis of three-dimensional WO3 octahedra: characterization, optical and efficient photocatalytic properties. RSC Adv 4(71):37914–37920

    Article  CAS  Google Scholar 

  • Aslam M et al (2014b) Morphology controlled bulk synthesis of disc-shaped WO3 powder and evaluation of its photocatalytic activity for the degradation of phenols. J Hazard Mater 276:120–128

    Article  CAS  Google Scholar 

  • Aslam I et al (2014c) The synergistic effect between WO3 and gC 3N 4 towards efficient visible-light-driven photocatalytic performance. N J Chem 38(11):5462–5469

    Article  CAS  Google Scholar 

  • Aslam I et al (2015a) A novel Z-scheme WO3/CdWO4 photocatalyst with enhanced visible-light photocatalytic activity for the degradation of organic pollutants. RSC Adv 5(8):6019–6026

    Article  CAS  Google Scholar 

  • Aslam I et al (2015b) A facile one-step fabrication of novel WO3/Fe2 (WO4) 3·10.7 H2O porous microplates with remarkable photocatalytic activities. Cryst Eng Commun 17(26):4809–4817

    Article  CAS  Google Scholar 

  • Bahnemann D et al (1994) Aquatic and surface photochemistry. Lewis, Boca Raton, p 261

    Google Scholar 

  • Bo**ova AS et al (2008) Photocatalytic degradation of malachite green dyes with TiO2/WO3 composite. Eur J Anal Chem 3(1):34–43

    Google Scholar 

  • Chatchai P, Nosaka AY, Nosaka Y (2013) Photoelectrocatalytic performance of WO3/BiVO4 toward the dye degradation. Electrochim Acta 94:314–319

    Article  CAS  Google Scholar 

  • Cheng X et al (2007) Enhanced photoelectrocatalytic performance of Zn-doped WO3 photocatalysts for nitrite ions degradation under visible light. Chemosphere 68(10):1976–1984

    Article  CAS  Google Scholar 

  • Cui Z et al (2010) Processing–structure–property relationships of Bi2WO6 nanostructures as visible-light-driven photocatalyst. J Hazard Mater 183(1):211–217

    Article  CAS  Google Scholar 

  • de la Martínez A, Martínez DS, Cuéllar EL (2010) Synthesis and characterization of WO3 nanoparticles prepared by the precipitation method: evaluation of photocatalytic activity under vis-irradiation. Solid State Sci 12(1):88–94

    Article  Google Scholar 

  • de la Martínez A, Martínez DS, Cuéllar EL (2013) Synthesis of WO3 nanoparticles by citric acid-assisted precipitation and evaluation of their photocatalytic properties. Mater Res Bull 48(2):691–697

    Article  Google Scholar 

  • Elmorsi TM et al (2010) Decolorization of Mordant red 73 azo dye in water using H2O2/UV and photo-Fenton treatment. J Hazard Mater 174(1):352–358

    Article  CAS  Google Scholar 

  • Fakhri A, Behrouz S (2015) Photocatalytic properties of tungsten trioxide (WO3) nanoparticles for degradation of Lidocaine under visible and sunlight irradiation. Sol Energy 112:163–168

    Article  CAS  Google Scholar 

  • Feng C, Wang S, Geng B (2011) Ti(iv) doped WO3 nanocuboids: fabrication and enhanced visible-light-driven photocatalytic performance. Nanoscale 3(9):3695–3699

    Article  CAS  Google Scholar 

  • Gan L et al (2016) Visible light induced methylene blue dye degradation photo-catalyzed by WO3/graphene nanocomposites and the mechanism. Ceram Int 42(14):15235–15241

    Article  CAS  Google Scholar 

  • García-Rodríguez S (2013) Alternative metal oxide photocatalysts, in design of advanced photocatalytic materials for energy and environmental applications. Springer, New York, pp 103–122

    Book  Google Scholar 

  • Gondal M et al (2010) Synthesis, characterization, and antimicrobial application of nano-palladium-doped nano-WO3. J Mol Catal A Chem 323(1):78–83

    Article  CAS  Google Scholar 

  • Grätzel M (2001) Photoelectrochemical cells. Nature 414(6861):338–344

    Article  Google Scholar 

  • Gun Y et al (2015) Joint effects of photoactive TiO2 and fluoride-do** on SnO2 inverse opal nanoarchitecture for solar water splitting. ACS Appl Mater Interfaces 7(36):20292–20303

    Article  CAS  Google Scholar 

  • Hameed A, Gondal M, Yamani Z (2004) Effect of transition metal do** on photocatalytic activity of WO3 for water splitting under laser illumination: role of 3d-orbitals. Catal Commun 5(11):715–719

    Article  CAS  Google Scholar 

  • Hayat K et al (2011) Laser induced photocatalytic degradation of hazardous dye (Safranin-O) using self synthesized nanocrystalline WO3. J Hazard Mater 186(2):1226–1233

    Article  CAS  Google Scholar 

  • Ho G, Chua K, Siow D (2012) Metal loaded WO3 particles for comparative studies of photocatalysis and electrolysis solar hydrogen production. Chem Eng J 181:661–666

    Article  Google Scholar 

  • Huang J et al (2012) Flower-like and hollow sphere-like WO3 porous nanostructures: selective synthesis and their photocatalysis property. Mater Res Bull 47(11):3224–3232

    Article  CAS  Google Scholar 

  • Huang J, **ao L, Yang X (2013) WO3 nanoplates, hierarchical flower-like assemblies and their photocatalytic properties. Mater Res Bull 48(8):2782–2785

    Article  CAS  Google Scholar 

  • Hunge Y et al (2015) Photoelectrocatalytic degradation of methyl red using sprayed WO3 thin films under visible light irradiation. J Mater Sci Mater Electron 26(11):8404–8412

    Article  CAS  Google Scholar 

  • Hunge Y et al (2016) Photoelectrocatalytic degradation of methyl blue using sprayed WO3 thin films. J Mater Sci Mater Electron 27(2):1629–1635

    Article  CAS  Google Scholar 

  • Hwang DW et al (2002) Mg-doped WO3 as a novel photocatalyst for visible light-induced water splitting. Catal Lett 80(1–2):53–57

    Article  CAS  Google Scholar 

  • Khan MM, Khan MM, Cho MH (2016) Fabrication of WO3 nanorods on graphene nanosheets for improved visible light-induced photocapacitive and photocatalytic performance. RSC Adv 6:20824–20833

    Article  CAS  Google Scholar 

  • Kim J, Lee CW, Choi W (2010) Platinized WO3 as an environmental photocatalyst that generates OH radicals under visible light. Environ Sci Technol 44(17):6849–6854

    Article  CAS  Google Scholar 

  • Kubacka A, Fernandez-Garcia M, Colon G (2011) Advanced nanoarchitectures for solar photocatalytic applications. Chem Rev 112(3):1555–1614

    Article  Google Scholar 

  • Kumar SG, Rao KK (2015) Tungsten-based nanomaterials (WO3 & Bi2WO6): modifications related to charge carrier transfer mechanisms and photocatalytic applications. Appl Surf Sci 355:939–958

    Article  Google Scholar 

  • Lee WH, Lai CW, Hamid SBA (2015) One-step formation of WO3-loaded TiO2 nanotubes composite film for high photocatalytic performance. Materials 8(5):2139–2153

    Article  Google Scholar 

  • Li Q-H et al (2014) Cylindrical stacks and flower-like tungsten oxide microstructures: controllable synthesis and photocatalytic properties. Ceram Int 40(3):4969–4973

    Article  CAS  Google Scholar 

  • Liew S et al (2014) Yb-doped WO3 photocatalysts for water oxidation with visible light. Int J Hydrog Energy 39(9):4291–4298

    Article  CAS  Google Scholar 

  • Liu S, Yang J-H, Choy J-H (2006) Microporous SiO2–TiO2 nanosols pillared montmorillonite for photocatalytic decomposition of methyl orange. J Photochem Photobiol A 179(1):75–80

    Article  CAS  Google Scholar 

  • Liu H et al (2007) Preparation and photocatalytic activity of dysprosium doped tungsten trioxide nanoparticles. Mater Chem Phys 104(2):377–383

    Article  CAS  Google Scholar 

  • Luo J, Yartym J, Hepel M (2002) Photoelectrochemical degradation of Orange II textile dye on nanostructured WO3 film electrodes. J N Mater Electrochem Syst 5:315–321

    CAS  Google Scholar 

  • Manikandan M et al (2014) Photocatalytic water splitting under visible light by mixed-valence Sn3O4. ACS Appl Mater Interfaces 6(6):3790–3793

    Article  CAS  Google Scholar 

  • Martínez DS, Martínez- A, De La Cruz A, Cuéllar EL (2011) Photocatalytic properties of WO3 nanoparticles obtained by precipitation in presence of urea as complexing agent. Appl Catal A 398(1):179–186

    Article  Google Scholar 

  • Mohagheghian A et al (2015) Photocatalytic degradation of a textile dye by illuminated tungsten oxide nanopowder. J Adv Oxid Technol 18(1):61–68

    CAS  Google Scholar 

  • Mohamed MM, Ahmed SA, Khairou KS (2014) Unprecedented high photocatalytic activity of nanocrystalline WO3/NiWO4 hetero-junction towards dye degradation: effect of template and synthesis conditions. Appl Catal B 150:63–73

    Article  Google Scholar 

  • Mu W et al (2014) Characterizations of Nb-doped WO3 nanomaterials and their enhanced photocatalytic performance. RSC Adv 4(68):36064–36070

    Article  CAS  Google Scholar 

  • Nakata K, Fujishima A (2012) TiO2 photocatalysis: design and applications. J Photochem Photobiol C Photochem Rev 13(3):169–189

    Article  CAS  Google Scholar 

  • Pudukudy M, Yaakob Z, Rajendran R (2013) Visible light active novel WO3 nanospheres for methylene blue degradation. Der Pharma Chemica 5:208–212

    CAS  Google Scholar 

  • Purwanto A et al (2011) Role of particle size for platinum-loaded tungsten oxide nanoparticles during dye photodegradation under solar-simulated irradiation. Catal Commun 12(6):525–529

    Article  CAS  Google Scholar 

  • Qamar M, Gondal M, Yamani Z (2010) Removal of Rhodamine 6G induced by laser and catalyzed by Pt/WO3 nanocomposite. Catal Commun 11(8):768–772

    Article  CAS  Google Scholar 

  • Qi H, Wang C, Liu J (2003) A simple method for the synthesis of highly oriented potassium-doped tungsten oxide nanowires. Adv Mater 15(5):411–414

    Article  CAS  Google Scholar 

  • Ramos-Delgado N et al (2013) Synthesis by sol–gel of WO3/TiO2 for solar photocatalytic degradation of malathion pesticide. Catal Today 209:35–40

    Article  CAS  Google Scholar 

  • Sadakane M et al (2010) Preparation of 3-D ordered macroporous tungsten oxides and nano-crystalline particulate tungsten oxides using a colloidal crystal template method, and their structural characterization and application as photocatalysts under visible light irradiation. J Mater Chem 20(9):1811–1818

    Article  CAS  Google Scholar 

  • Saison T et al (2013) New insights into Bi2WO6 properties as a visible-light photocatalyst. J Phys Chem C 117(44):22656–22666

    Article  CAS  Google Scholar 

  • Seabold JA, Choi K-S (2011) Effect of a cobalt-based oxygen evolution catalyst on the stability and the selectivity of photo-oxidation reactions of a WO3 photoanode. Chem Mater 23(5):1105–1112

    Article  CAS  Google Scholar 

  • Shi J et al (2013) Controllable synthesis of WO3·n H2O microcrystals with various morphologies by a facile inorganic route and their photocatalytic activities. N J Chem 37(5):1538–1544

    Article  CAS  Google Scholar 

  • Sin JC et al (2012) Degrading endocrine disrupting chemicals from wastewater by TiO. Int J Photoenergy. doi:10.1155/2012/185159

    Google Scholar 

  • Shiraishi Y et al (2012) Visible light-induced partial oxidation of cyclohexane on WO3 loaded with Pt nanoparticles. Catal Sci Technol 2(2):400–405

    Article  CAS  Google Scholar 

  • Singh S et al (2014) Synthesis of different crystallographic Al2O3 nano-materials from solid waste for application in dye degradation. RSC Adv 3:50801–50810

    Article  Google Scholar 

  • Smith W et al (2011) Quasi-core-shell TiO2/WO3 and WO3/TiO2 nanorod arrays fabricated by glancing angle deposition for solar water splitting. J Mater Chem 21(29):10792–10800

    Article  CAS  Google Scholar 

  • Subramani A et al (2007) Photocatalytic degradation of indigo carmine dye using TiO2 impregnated activated carbon. Bull Mater Sci 30(1):37–41

    Article  CAS  Google Scholar 

  • Sudrajat H, Babel S (2016) Rapid photocatalytic degradation of the recalcitrant dye amaranth by highly active N–WO3. Environ Chem Lett 14:243–249

    Article  CAS  Google Scholar 

  • Sun J et al (2008) Photocatalytic degradation of Orange G on nitrogen-doped TiO2 catalysts under visible light and sunlight irradiation. J Hazard Mater 155(1):312–319

    Article  CAS  Google Scholar 

  • Sun S et al (2010) Preparation of ordered mesoporous Ag/WO3 and its highly efficient degradation of acetaldehyde under visible-light irradiation. J Hazard Mater 178(1):427–433

    Article  CAS  Google Scholar 

  • Sun W et al (2015) High surface area tunnels in hexagonal WO3. Nano Lett 15(7):4834–4838

    Article  CAS  Google Scholar 

  • Takeuchi M et al (2011) Preparation of the visible light responsive N3-doped WO3 photocatalyst by a thermal decomposition of ammonium paratungstate. Appl Catal B 110:1–5

    Article  CAS  Google Scholar 

  • Tanaka D, Oaki Y, Imai H (2010) Enhanced photocatalytic activity of quantum-confined tungsten trioxide nanoparticles in mesoporous silica. Chem Commun 46(29):5286–5288

    Article  CAS  Google Scholar 

  • Teka T, Tadesse A (2014) Effect of selected operating parameters on the photocatalytic efficiency of nitrogen-doped TiO2/WO3 nano-composite material for photodegradation of phenol red in aqueous solution. Int J Innov Sci Res 7(1):174–185

    Google Scholar 

  • Theerthagiri J et al (2015) Synthesis and characterization of a CuS–WO3 composite photocatalyst for enhanced visible light photocatalytic activity. RSC Adv 5(65):52718–52725

    Article  CAS  Google Scholar 

  • Vamvasakis I et al (2015) Synthesis of WO3 catalytic powders: evaluation of photocatalytic activity under NUV/visible light irradiation and alkaline reaction pH. J Sol-Gel Sci Technol 76(1):120–128

    Article  CAS  Google Scholar 

  • Wang G et al (2012a) Hydrogen-treated WO3 nanoflakes show enhanced photostability. Energy Environ Sci 5(3):6180–6187

    Article  CAS  Google Scholar 

  • Wang G, Ling Y, Li Y (2012b) Oxygen-deficient metal oxide nanostructures for photoelectrochemical water oxidation and other applications. Nanoscale 4(21):6682–6691

    Article  CAS  Google Scholar 

  • Wang C et al (2015) Nanosheets assembled hierarchical flower-like WO3 nanostructures: synthesis, characterization, and their gas sensing properties. Sens Actuat B Chem 210:75–81

    Article  CAS  Google Scholar 

  • Wang D et al (2016) Low temperature hydrothermal synthesis of visible-light-activated I-doped TiO2 for improved dye degradation. J Nanosci Nanotechnol 16(6):5676–5682

    Article  CAS  Google Scholar 

  • Wen Z et al (2013) Ultrahigh-efficiency photocatalysts based on mesoporous Pt–WO3 nanohybrids. Phys Chem Chem Phys 15(18):6773–6778

    Article  CAS  Google Scholar 

  • Widiyandari H et al (2012) CuO/WO3 and Pt/WO3 nanocatalysts for efficient pollutant degradation using visible light irradiation. Chem Eng J 180:323–329

    Article  CAS  Google Scholar 

  • Wu S et al (2013) Hydrothermal synthesis, characterization of visible-light-driven α-Bi2O3 enhanced by Pr3+ do**. J Chem Technol Biotechnol 88(10):1828–1835

    Article  CAS  Google Scholar 

  • ** G et al (2012) Synthesis of multiple-shell WO3 hollow spheres by a binary carbonaceous template route and their applications in visible-light photocatalysis. Chem A Eur J 18(44):13949–13953

    Article  CAS  Google Scholar 

  • **e J et al (2014) Simple preparation of WO3–ZnO composites with UV–Vis photocatalytic activity and energy storage ability. Ceram Int 40(8):12519–12524

    Article  CAS  Google Scholar 

  • Xu C et al (2009) Surfactant-free synthesis of Bi2WO6 multilayered disks with visible-light-induced photocatalytic activity. Mater Res Bull 44(8):1635–1641

    Article  CAS  Google Scholar 

  • Xue Q et al (2016) Photocatalytic degradation of geosmin by Pd nanoparticle modified WO3 catalyst under simulated solar light. Chem Eng J 283:614–621

    Article  CAS  Google Scholar 

  • Yang H et al (2006) Sol–gel synthesis of TiO2 nanoparticles and photocatalytic degradation of methyl orange in aqueous TiO2 suspensions. J Alloys Compd 413(1):302–306

    Article  CAS  Google Scholar 

  • Yin J et al (2013) Synthesis and applications of γ-tungsten oxide hierarchical nanostructures. Cryst Growth Des 13(2):759–769

    Article  CAS  Google Scholar 

  • Yu L et al (2012) Photoelectrocatalytic performance of TiO2 nanoparticles incorporated TiO2 nanotube arrays. Appl Catal B 113:318–325

    Article  Google Scholar 

  • Zhang X et al (2011) Three-dimensional WO3 nanostructures on carbon paper: photoelectrochemical property and visible light driven photocatalysis. Chem Commun 47(20):5804–5806

    Article  CAS  Google Scholar 

  • Zheng Y et al (2014) Template and surfactant free synthesis of hierarchical WO3 0.33 H2O via a facile solvothermal route for photocatalytic RhB degradation. Cryst Eng Commun 16(27):6107–6113

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to extend their gratitude to all who assisted in performing this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Tahir.

Additional information

Editorial responsibility: Binbin Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tahir, M.B., Nabi, G., Rafique, M. et al. Nanostructured-based WO3 photocatalysts: recent development, activity enhancement, perspectives and applications for wastewater treatment. Int. J. Environ. Sci. Technol. 14, 2519–2542 (2017). https://doi.org/10.1007/s13762-017-1394-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-017-1394-z

Keywords

Navigation