Log in

Hybrid photocatalytic/photochemical degradation of 1,2-dichlorobenzene: kinetic, thermodynamic, operating cost, synergism and mineralization study

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

This study investigates the combined effects of UV/TiO2 and UV/H2O2 processes on the degradation of 1,2-dichlorobenzene in aqueous media, employing a recycled current photo-reactor equipped with a water jacket. Evaluation of various factors—initial pH, TiO2 dosage, initial H2O2 concentration, pollutant concentration, and temperature—contributed to the optimization of degradation rates and operational costs for both processes. For the degradation of 50 mg/L of DCB, the optimal operating conditions were found to be for UV/TiO2: pH = 3, [TiO2] = 30 mg/L and T = 25 °C, and for UV/H2O2: pH = 3, [H2O2]0 = 350 mg/L and T = 25 °C. After 60 min of irradiation time, the degradation efficiency, pseudo first order rate constant and operational cost value for the UV/TiO2 and UV/H2O2 processes were as 98.9%, 0.0771 min−1, 11.6 $/m3 and 96.3%, 0.0573 min−1, 11.8 $/m3 respectively. Also, thermodynamic parameters of activation energy, enthalpy change, entropy change and standard Gibbs free energy were calculated as 21.78 (kJ/mol), 19.37 (kJ/mol), − 0.20 (kJ/mol K) and 73.34 (kJ/mol at 25 °C) for UV/TiO2 process and 7.62 (kJ/mol), 5.18 (kJ/mol), − 0.25 (kJ/mol K) and 80.14 (kJ/mol at 25 °C) for UV/H2O2 process. The investigation also encompassed the exploration of 13 hybridization scenarios, including UV/TiO2/H2O2 and UV/H2O2/TiO2, revealing notable findings. Notably, a specific hybridization scenario, namely UV/TiO2 (30 mg/L)/H2O2(250 mg/L), demonstrated a significant synergistic effect (29.5%). Evaluating pollutant mineralization unveiled compelling results, with approximately 85% mineralization achieved after 90 min for the UV/TiO2(30 mg/L)/H2O2(250 mg/L) scenario, showcasing a remarkable synergism (44%) in the mineralization process.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

DCB:

1,2-Dichlorobenzen

AOPs:

Advanced oxidation processes

ROS:

Reactive oxygen species

[DCB]0 :

Initial concentration of DCB

[DCB]:

DCB concentration at any time

DE%:

Degradation efficiency percentage

SG%:

Synergism percentage

UV:

Ultra violet

COD:

Chemical oxygen demand

ZPC:

Zero point charge

IUPAC:

International Union of Pure and Applied Chemistry

POC:

Process operating cost

CC:

Chemical cost

EEC:

Electricity energy cost

CEE:

Consumed electrical energy

ThEC:

Thermal energy cost

US$:

United States Dollar

EQ :

Thermal energy

m:

Mass of one cubic meter of polluted water

C p :

Specific heat capacity of water

T :

Temperature

R :

Ideal gas universal constant

k app :

Apparent rate constant

R 2 :

Coefficient of determination

P :

Electrical power

t :

Reaction time

V :

Reaction solution volume

E a :

Activation energy

ΔH°:

Enthalpy change

ΔS°:

Entropy change

ΔG°:

Gibbs free energy change

N A :

Avogadro's constant

h :

Planck's constant

\({e}_{CB}^{-}\) :

Conduction band electron

\({h}_{VB}^{+}\) :

Valance band electron

\({\uplambda }_{max}\) :

Maximum absorbance wavelength

References

  1. J. Wang, S. Wang, Effect of inorganic anions on the performance of advanced oxidation processes for degradation of organic contaminants. Chem. Eng. J. 411, 128392 (2021). https://doi.org/10.1016/j.cej.2020.128392

    Article  CAS  Google Scholar 

  2. M. Karimi-Nazarabad, E.K. Goharshadi, R. Mehrkhah, M. Davardoostmanesh, Highly efficient clean water production: reduced graphene oxide/graphitic carbon nitride/wood. Sep. Purif. Technol. 279, 119788 (2021). https://doi.org/10.1016/j.seppur.2021.119788

    Article  CAS  Google Scholar 

  3. S.G. Poulopoulos, A. Yerkinova, G. Ulykbanova, V.J. Inglezakis, Photocatalytic treatment of organic pollutants in a synthetic wastewater using UV light and combinations of TiO2, H2O2 and Fe (III). PLoS ONE 14(5), e0216745 (2019). https://doi.org/10.1371/journal.pone.0216745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. M. Pera-Titus, V. Garcia-Molina, M.A. Banos, J. Gimenez, S. Esplugas, Degradation of chlorophenols by means of advanced oxidation processes: a general review. Appl. Catal. B 47(4), 219 (2004). https://doi.org/10.1016/j.apcatb.2003.09.010

    Article  CAS  Google Scholar 

  5. O. Sacco, V. Vaiano, L. Rizzo, D. Sannino, Photocatalytic activity of a visible light active structured photocatalyst developed for municipal wastewater treatment. J. Clean. Prod. 175, 38 (2018). https://doi.org/10.1016/j.jclepro.2017.11.088

    Article  CAS  Google Scholar 

  6. D. Li, H. Zheng, F. Zhang, Y. Zhao, Y. Miao, J. Yang, Effect of copper do** in the TiO2 film electrodes on the performance of photoelectrochemical biofuel cells. J. Iran. Chem. Soc. 21(4), 1021 (2024). https://doi.org/10.1007/s13738-024-02972-5

    Article  CAS  Google Scholar 

  7. A. Salabat, F. Mirhoseini, F.H. Nouri, Microemulsion strategy for preparation of TiO2–Ag/poly(methyl methacrylate) nanocomposite and its photodegradation application. J. Iran. Chem. Soc. 20(3), 599 (2023). https://doi.org/10.1007/s13738-022-02693-7

    Article  CAS  Google Scholar 

  8. H. Abdolmohammad-Zadeh, Z. Talleb, M. Khalili, Photocatalytic degradation of Indigo Carmine using aluminum-doped titanium dioxide/zinc ferrite nanocomposite under visible light. J. Iran. Chem. Soc. 20(2), 389 (2023). https://doi.org/10.1007/s13738-022-02671-z

    Article  CAS  Google Scholar 

  9. S.G. Poulopoulos, C.J. Philippopoulos, Photo-assisted oxidation of chlorophenols in aqueous solutions using hydrogen peroxide and titanium dioxide. J. Environ. Sci. Health A. 39(6), 1385–1397 (2004). https://doi.org/10.1081/ESE-120037840

    Article  CAS  Google Scholar 

  10. M. Al-Mamun, S. Kader, M. Islam, M. Khan, Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: a review. J. Environ. Chem. Eng. 7(5), 103248 (2019). https://doi.org/10.1016/j.jece.2019.103248

    Article  CAS  Google Scholar 

  11. C. Galindo, P. Jacques, A. Kalt, Photodegradation of the aminoazobenzene acid orange 52 by three advanced oxidation processes: UV/H2O2, UV/TiO2 and VIS/TiO2. J. Photochem. Photobiol. A. Chem. 130(1), 35–47 (2000). https://doi.org/10.1016/S1010-6030(99)00199-9

    Article  CAS  Google Scholar 

  12. J.L. Wang, L.J. Xu, Advanced oxidation processes for wastewater treatment: formation of hydroxyl radical and application. Crit. Rev. Environ. Sci. Technol. 42(3), 251 (2012). https://doi.org/10.1080/10643389.2010.507698

    Article  CAS  Google Scholar 

  13. J. Garcia, J. Oliveira, A. Silva, C. Oliveira, J. Nozaki, N. De Souza, Comparative study of the degradation of real textile effluents by photocatalytic reactions involving UV/TiO2/H2O2 and UV/Fe2+/H2O2 systems. J. Hazard. Mater. 147(1–2), 105 (2007). https://doi.org/10.1016/j.jhazmat.2006.12.053

    Article  CAS  PubMed  Google Scholar 

  14. Q. Zhang, C. Li, T. Li, Rapid photocatalytic decolorization of methylene blue using high photon flux UV/TiO2/H2O2 process. Chem. Eng. J. 217, 407 (2013). https://doi.org/10.1016/j.cej.2012.11.106

    Article  CAS  Google Scholar 

  15. M. Saquib, M.A. Tariq, M. Haque, M. Muneer, Photocatalytic degradation of disperse blue 1 using UV/TiO2/H2O2 process. J. Environ. Manag. 88(2), 300 (2008). https://doi.org/10.1016/j.jenvman.2007.03.012

    Article  CAS  Google Scholar 

  16. E.T. Wahyuni, R. Roto, M. Sabrina, V. Anggraini, N. Leswana, A. Vionita, Photodegradation of detergent anionic surfactant in wastewater using UV/TiO2/H2O2 and UV/Fe2+/H2O2 processes. Am. J. Appl. Chem. 4(5), 174 (2016). https://doi.org/10.11648/j.ajac.20160405.13

    Article  CAS  Google Scholar 

  17. P. Verma, J. Kumar, Degradation and microbiological validation of Meropenem antibiotic in aqueous solution using UV, UV/H2O2, UV/TiO2 and UV/TiO2/H2O2 processes. Int. J. Eng. Res. Appl. 4(7), 58 (2014)

    Google Scholar 

  18. W.Y. Li, Y. Liu, X.L. Sun, F. Wang, L. Qian, X. Chen, J.P. Zhang, Photocatalytic degradation of MC-LR in water by the UV/TiO2/H2O2 process. Water Supply 16(1), 34–43 (2016). https://doi.org/10.2166/ws.2015.110

    Article  CAS  Google Scholar 

  19. P. Ncube, C. Zvinowanda, M. Belaid, F. Ntuli, Heterogeneous Photocatalytic degradation of nevirapine in wastewater using the UV/TiO2/H2O2 process. Environ. Process. 10(1), 1 (2023). https://doi.org/10.1007/s40710-022-00615-6

    Article  CAS  Google Scholar 

  20. R. Arshad, T.H. Bokhari, T. Javed, I.A. Bhatti, S. Rasheed, M. Iqbal, A. Nazir, S. Naz, M.I. Khan, M.K.K. Khosa, M. Iqbal, M. Zia-ur-Rehman, Degradation product distribution of Reactive Red-147 dye treated by UV/H2O2/TiO2 advanced oxidation process. J. Mater. Res. Technol. 9(3), 3168 (2020). https://doi.org/10.1016/j.jmrt.2020.01.062

    Article  CAS  Google Scholar 

  21. N.A. Mohammed, A.I. Alwared, M.S. Salman, Photocatalytic degradation of reactive yellow dye in wastewater using H2O2/TiO2/UV technique. Iraqi J. Chem. Pet. Eng. 21(1), 15–21 (2020). https://doi.org/10.31699/IJCPE.2020.1.3

    Article  Google Scholar 

  22. M. Kulkarni, P. Thakur, The effect of UV/TiO2/H2O2 process and influence of operational parameters on photocatalytic degradation of azo dye in aqueous TiO2 suspension. Chem. Chem. Technol 4, 265–270 (2010)

    Article  Google Scholar 

  23. T.H. Bokhari, W. Abbas, M. Munir, M. Zuber, M. Usman, M. Iqbal, I.A. Bhatti, I.H. Bukhari, M.K. Khan, Impact of UV/TiO2/H2O2 on Degradation of Disperse Red F3BS. Asian J. Chem. 27(1), 282–286 (2015). https://doi.org/10.14233/ajchem.2015.17553

    Article  CAS  Google Scholar 

  24. T.F. Chen, R.A. Doong, W.A. Lei, Photocatalytic degradation of parathion in aqueous TiO2 dispersion: the effect of hydrogen peroxide and light intensity. Water Sci. Technol. 37(8), 187 (1998). https://doi.org/10.1016/S0273-1223(98)00249-2

    Article  CAS  Google Scholar 

  25. X. Peng, W. Li, J. Chen, X. Jia, Photocatalytic degradation of tetrabromobisphenol a with a combined UV/TiO2/H2O2 process. Desalin. Water Treat. 65, 451 (2017). https://doi.org/10.5004/dwt.2017.20232

    Article  CAS  Google Scholar 

  26. Y. Zang, R. Farnood, Effect of Hydrogen Peroxide on the Photocatalytic Degradation of Methyl tert-butyl Ether. Top. Catal. 37, 91 (2006). https://doi.org/10.1007/s11244-006-0009-6

    Article  CAS  Google Scholar 

  27. K. Seyyedi, S. Khoshbin, R. Piri, Removing of acid red 1 dye pollutant from contaminated waters by UV/TiO2/H2O2 process using a recirculating tubular reactor. J. Appl. Chem. Res. 17(3), 21 (2023)

    Google Scholar 

  28. J. Saien, Z. Ojaghloo, A.R. Soleymani, M. Rasoulifard, Homogeneous and heterogeneous AOPs for rapid degradation of Triton X-100 in aqueous media via UV light, nano titania hydrogen peroxide and potassium persulfate. Chem. Eng. J. 167(1), 172 (2011). https://doi.org/10.1016/j.cej.2010.12.017

    Article  CAS  PubMed  Google Scholar 

  29. A. Dixit, A.J. Tirpude, A.K. Mungray, M. Chakraborty, Degradation of 2, 4 DCP by sequential biological–advanced oxidation process using UASB and UV/TiO2/H2O2. Desalin. 272(1–3), 265 (2011). https://doi.org/10.1016/j.desal.2011.01.035

    Article  CAS  Google Scholar 

  30. B. Karimi, M. Rajaei, M. Eesvand, M. Habibi, Application of UV/TiO2/H2O2 advanced oxidation to remove naphthalene from water. J. Water Wastewater Ab va Fazilab 27(5), 53 (2016)

    Google Scholar 

  31. E.M. Cuerdacorrea, J.R. Dominguezvargas, M.J. Munozpena, T. Gonzalez, Ultraviolet-photoassisted advanced oxidation of parabens catalyzed by hydrogen peroxide and titanium dioxide Improving the system. Ind. Eng. Chem. Res. 55(18), 5152 (2016). https://doi.org/10.1021/acs.iecr.5b04560

    Article  CAS  Google Scholar 

  32. D. Ovhal Sheetal, T. Pragati, Kinetics of photocatalytic degradation of methylene blue in a TiO2 slurry reactor. Res. J. Chem. Environ 14(4), 9 (2010)

    Google Scholar 

  33. A. Riga, K. Soutsas, K. Ntampegliotis, V. Karayannis, G. Papapolymerou, Effect of system parameters and of inorganic salts on the decolorization and degradation of procion H-exl dyes comparison of H2O2/UV, fenton, UV/fenton, TiO2/UV and TiO2/UV/H2O2 processes. Desalin. 211(1–3), 72 (2007). https://doi.org/10.1016/j.desal.2006.04.082

    Article  CAS  Google Scholar 

  34. A.T. Nguyen, R.S. Juang, Photocatalytic degradation of p-chlorophenol by hybrid H2O2 and TiO2 in aqueous suspensions under UV irradiation. J. Environ. Manage. 147, 271 (2015). https://doi.org/10.1016/j.jenvman.2014.08.023

    Article  CAS  PubMed  Google Scholar 

  35. A.R. Soleymani, A.M. Tavassoli, H. Rezaei-Vahidian, Assessment of back-side activation of titania thin film using a fixed-bed photocatalytic-reactor: kinetic study, operating cost and ANN modeling. Chem. Eng. Res. Des. 190, 759 (2023). https://doi.org/10.1016/j.cherd.2022.12.047

    Article  CAS  Google Scholar 

  36. J. Saien, A.R. Soleymani, Feasibility of using a slurry falling film photo-reactor for individual and hybridized AOPs. J. Ind. Eng. Chem. 18(5), 1683 (2012). https://doi.org/10.1016/j.jiec.2012.03.014

    Article  CAS  Google Scholar 

  37. R. Ma, J. Sun, D.H. Li, J.J. Wei, Review of synergistic photo-thermo-catalysis: Mechanisms, materials and applications. Int. J. Hydrog. Energy 45(55), 30288 (2020). https://doi.org/10.1016/j.ijhydene.2020.08.127

    Article  CAS  Google Scholar 

  38. E. Unosson, E.K. Tsekoura, H. Engqvist, K. Welch, Synergetic inactivation of Staphylococcus epidermidis and Streptococcus mutansin a TiO2/H2O2/UV system. Biomatter. 3(4), e26727 (2013). https://doi.org/10.4161/biom.26727

    Article  PubMed  PubMed Central  Google Scholar 

  39. S. Apollo, M.S. Onyongo, A. Ochieng, UV/H2O2/TiO2/Zeolite hybrid system for treatment of molasses wastewater. Iran. J. Chem. Chem. Eng. 33(2), 107 (2014)

    CAS  Google Scholar 

  40. J.M. Monteagudo, A. Durán, I. San Martín, B. Vellón, Photocatalytic degradation of aniline by solar/TiO2 system in the presence of the electron acceptors Na2S2O8 and H2O2. Sep. Purif. Technol. 238, 116456 (2020). https://doi.org/10.1016/j.seppur.2019.116456

    Article  CAS  Google Scholar 

  41. T.A. Egerton, H. Purnama, Does hydrogen peroxide really accelerate TiO2 UV-C photocatalyzed decolouration of azo-dyes such as Reactive Orange 16? Dyes Pigm. 101, 280 (2014). https://doi.org/10.1016/j.dyepig.2013.10.019

    Article  CAS  Google Scholar 

  42. M.E. Simonsen, C.V. Jensen, E.G. Søgaard, Comparison of different UV-activated AOP methods. J. Adv. Oxid. Technol. 16(1), 179 (2013). https://doi.org/10.1515/jaots-2013-0120

    Article  CAS  Google Scholar 

  43. M.K. Aulakh, B. Pal, Solar irradiated selective nitroaromatics reduction over plasmonic Ag-TiO2: deposition time dependent size growth and oxidation state of co-catalyst. Chem. Eng. J. 429, 132385 (2022). https://doi.org/10.1016/j.cej.2021.132385

    Article  CAS  Google Scholar 

  44. U.S. Government Energy Information Administration, Independent Statisticsand Analysis in, http://www.eia.gov (2023).

  45. Chemicals Cost, 2023, http://www.alibaba.com and http://www.made-in-china.com.

  46. A.R. Soleymani, M. Mahdiei, M. Haerifar, Nano-titania/light expanded clay aggregate fixed bed as an effective adsorbent for removal of organic pollutant from water: equilibrium and kinetic studies. J. Clean. Prod. 211, 1328 (2019). https://doi.org/10.1016/j.jclepro.2018.11.258

    Article  CAS  Google Scholar 

  47. A.R. Soleymani, R. Chahardoli, M. Kaykhaii, Development of UV/H2O2/TiO2–LECA hybrid process based on operating cost: application of an effective fixed bed photo-catalytic recycled reactor. J. Ind. Eng. Chem. 44, 90 (2016). https://doi.org/10.1016/j.jiec.2016.08.009

    Article  CAS  Google Scholar 

  48. J. Saien, A.R. Soleymani, Degradation and mineralization of Direct Blue 71 in a circulating upflow reactor by UV/TiO2 process and employing a new method in kinetic study. J. Hazard. Mater. 144(1), 506 (2007). https://doi.org/10.1016/j.jhazmat.2006.10.065

    Article  CAS  PubMed  Google Scholar 

  49. K.-I. Ishibashi, A. Fujishima, T. Watanabe, K. Hashimoto, Detection of active oxidative species in TiO2 photocatalysis using the fluorescence technique. Electrochem. commun. 2(3), 207 (2000). https://doi.org/10.1016/S1388-2481(00)00006-0

    Article  CAS  Google Scholar 

  50. S. Khezrianjoo, J. Lee, K.-H. Kim, V. Kumar, Eco-toxicological and kinetic evaluation of TiO2 and ZnO nanophotocatalysts in degradation of organic dye. Catal. 9(10), 871 (2019). https://doi.org/10.3390/catal9100871

    Article  CAS  Google Scholar 

  51. M.R.D. Khaki, M.S. Shafeeyan, A.A.A. Raman, W.M.A.W. Daud, Application of doped photocatalysts for organic pollutant degradation—a review. J. Environ. Manag. 198, 78 (2017). https://doi.org/10.1016/j.jenvman.2017.04.099

    Article  CAS  Google Scholar 

  52. Z. Shams-Ghahfarokhi, A. Nezamzadeh-Ejhieh, As-synthesized ZSM-5 zeolite as a suitable support for increasing the photoactivity of semiconductors in a typical photodegradation process. Mater. Sci. Semicond. 39, 265 (2015). https://doi.org/10.1016/j.mssp.2015.05.022

    Article  CAS  Google Scholar 

  53. S. Findik, Decolorization of Direct Black 22 by Photo Fenton like Method Using UV Light and Zeolite Modified Zinc Ferrite: Kinetics and Thermodynamics. Acta Chim. Slov. 69(3), 552–563 (2022). https://doi.org/10.17344/acsi.2022.7431

    Article  CAS  PubMed  Google Scholar 

  54. U.J. Ahile, R.A. Wuana, A.U. Itodo, R. Sha’Ato, R.F. Dantas, Stability of iron chelates during photo-fenton process: The role of pH, hydroxyl radical attack and temperature. J. Water Process Eng. 36, 101320 (2020). https://doi.org/10.1016/j.jwpe.2020.101320

    Article  Google Scholar 

  55. P.P. Gan, S.F.Y. Li, Efficient removal of Rhodamine B using a rice hull-based silica supported iron catalyst by Fenton-like process. Chem. Eng. J. 229, 351 (2013). https://doi.org/10.1016/j.cej.2013.06.020

    Article  CAS  Google Scholar 

  56. Z. Ghasemi, H. Younesi, A.A. Zinatizadeh, Kinetics and thermodynamics of photocatalytic degradation of organic pollutants in petroleum refinery wastewater over nano-TiO2 supported on Fe-ZSM-5. J. Taiwan Inst. Chem. Eng. 65, 357 (2016). https://doi.org/10.1016/j.jtice.2016.05.039

    Article  CAS  Google Scholar 

  57. J. Saien, A. Soleymani, J. Sun, Parametric optimization of individual and hybridized AOPs of Fe2+/H2O2 and UV/S2O82− for rapid dye destruction in aqueous media. Desalin. 279(1–3), 298 (2011). https://doi.org/10.1016/j.desal.2011.06.024

    Article  CAS  Google Scholar 

  58. H. Gerischer, A. Heller, The role of oxygen in photooxidation of organic molecules on semiconductor particles. J. Phys. Chem. 95(13), 5261 (1991). https://doi.org/10.1021/j100166a063

    Article  CAS  Google Scholar 

  59. R. Thiruvenkatachari, T.O. Kwon, J.C. Jun, S. Balaji, M. Matheswaran, I.S. Moon, Application of several advanced oxidation processes for the destruction of terephthalic acid (TPA). J. Hazard. Mater. 142(1–2), 308 (2007). https://doi.org/10.1016/j.jhazmat.2006.08.023

    Article  CAS  PubMed  Google Scholar 

  60. Y. Chen, Z. Sun, Y. Yang, Q. Ke, Heterogeneous photocatalytic oxidation of polyvinyl alcohol in water. J. Photochem. Photobiol. A. 142(1), 85 (2001). https://doi.org/10.1016/S1010-6030(01)00477-4

    Article  CAS  Google Scholar 

  61. R.C. Testolin, L. Mater, E. Sanches-Simões, A. Dal Conti-Lampert, A.X.R. Corrêa, M.L. Groth, M. Oliveira-Carneiro, C.M. Radetski, Comparison of the mineralization and biodegradation efficiency of the Fenton reaction and Ozone in the treatment of crude petroleum-contaminated water. J. Environ. Chem. Eng. 8(5), 104265 (2020). https://doi.org/10.1016/j.jece.2020.104265

    Article  CAS  Google Scholar 

  62. O. Ganzenko, C. Trellu, N. Oturan, D. Huguenot, Y. Péchaud, E.D. van Hullebusch, M.A. Oturan, Electro-Fenton treatment of a complex pharmaceutical mixture: Mineralization efficiency and biodegradability enhancement. Chemosphere 253, 126659 (2020). https://doi.org/10.1016/j.chemosphere.2020.126659

    Article  CAS  PubMed  Google Scholar 

  63. S. Sahinkaya, COD and color removal from synthetic textile wastewater by ultrasound assisted electro-fenton oxidation process. J. Ind. Eng. Chem. 19(2), 601 (2013). https://doi.org/10.1016/j.jiec.2012.09.023

    Article  CAS  Google Scholar 

  64. T. Xu, X.M. **ao, H.Y. Liu, Advanced oxidation degradation of dichlorobenzene in Water by the UV/H2O2 Process. J. Environ. Sci. Heal. A. 40(4), 751 (2005). https://doi.org/10.1081/ESE-200048256

    Article  CAS  Google Scholar 

  65. E. Selli, C.L. Bianchi, C. Pirola, G. Cappelletti, V. Ragaini, Efficiency of 1,4-dichlorobenzene degradation in water under photolysis, photocatalysis on TiO2 and sonolysis. J. of Hazard. Mater. 153(3), 1136 (2008). https://doi.org/10.1016/j.jhazmat.2007.09.071

    Article  CAS  Google Scholar 

  66. R. Nadarajan, W.A. Wan Abu Bakar, R. Ali, R. Ismail, Photocatalytic degradation of 1,2-dichlorobenzene using immobilized TiO2/SnO2/WO3 photocatalyst under visible light: application of response surface methodology. Arab. J. Chem. 11(1), 34 (2018). https://doi.org/10.1016/j.arabjc.2016.03.006

    Article  CAS  Google Scholar 

  67. R. Andreozzi, M. Canterino, R. Marotta, Fe(III) homogeneous photocatalysis for the removal of 1,2-dichlorobenzene in aqueous solution by means UV lamp and solar light. Water Res. 40(20), 3785 (2006). https://doi.org/10.1016/j.watres.2006.05.029

    Article  CAS  PubMed  Google Scholar 

  68. S.A. Mahmoud, E. Yassitepe, S.I. Shah, Photolysis and photocatalysis of 1,4 dichlorobenzene using sputtered TiO2 thin films. Mater. Sci. Forum 734, 215 (2013). https://doi.org/10.4028/www.scientific.net/MSF.734.215

    Article  CAS  Google Scholar 

  69. R. Nadarajan, W.A. Wan Abu Bakar, R. Ali, R. Ismail, Effect of structural defects towards the performance of TiO2/SnO2/WO3 photocatalyst in the degradation of 1,2-dichlorobenzene. J. Taiwan Inst. Chem. Eng. 64, 106 (2016). https://doi.org/10.1016/j.jtice.2016.03.044

    Article  CAS  Google Scholar 

  70. S.C. Jung, H. Lee, S.J. Ki, S.J. Kim, Y.K. Park, Effect of constituent processes and conditions of the hybrid TiO2 photocatalytic system on 1,4-dichlorobenzene degradation. Catal. Today 348, 270 (2020). https://doi.org/10.1016/j.cattod.2019.08.021

    Article  CAS  Google Scholar 

  71. R.R. Ozer, J.L. Ferry, Investigation of the photocatalytic activity of TiO2−polyoxometalate systems. Environ. sci. technol. 35(15), 3242 (2001). https://doi.org/10.1021/es0106568

    Article  CAS  PubMed  Google Scholar 

  72. E.Y. Kim, Y.H. Kim, C.M. Whang, Nd3+-doped TiO2 nanoparticles prepared by sol-hydrothermal process. Mater. sci. forum 510–511, 122 (2006). https://doi.org/10.4028/www.scientific.net/MSF.510-511.122

    Article  Google Scholar 

Download references

Acknowledgements

We express our sincere thanks and appreciation to the Malayer and Payame Noor Universities authorities for providing the financial support to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Reza Soleymani.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 938 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soleymani, A.R., Azimi, S. & Rahnama, A. Hybrid photocatalytic/photochemical degradation of 1,2-dichlorobenzene: kinetic, thermodynamic, operating cost, synergism and mineralization study. J IRAN CHEM SOC 21, 1977–1996 (2024). https://doi.org/10.1007/s13738-024-03044-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-024-03044-4

Keywords

Navigation