Log in

MgO nanoparticle-catalyzed, solvent-free Hantzsch synthesis and antibacterial evaluation of new substituted thiazoles

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

In this study, some novel 4-thiazolylpyrazoles were synthesized by modified Hantzsch method, under solvent-free conditions and in the presence of MgO nanoparticles as catalyst. Excellent yields in shorter reaction times were achieved under the new general protocol. Also, the in vitro antibacterial effects of synthesized compounds were evaluated against 21 gram-positive and gram-negative pathogenic bacterial strains and compared to antibiotics such as ceftriaxone and penicillin. The results were reported as inhibition zone diameter, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) values. The compounds showed moderate to good antibacterial activities. Among the newly synthesized thiazoles, compounds 7b, f had inhibitory effects against eight pathogenic bacteria; besides, thioamide 6 with MIC and MBC values of 32 and 64 μg/mL against Streptococcus agalactiae was identified as the most effective antibacterial agent.

Graphical Abstract

MgO nanoparticle was prepared and successfully used as an efficient recyclable catalyst for the Hantzsch thiazole synthesis; reaction times and product yields were significantly improved in the presence of nanocatalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. A. Ayati, S. Emami, A. Asadipour, A. Shafiee, A. Foroumadi, Eur. J. Med. Chem. 97, 699 (2015)

    Article  CAS  Google Scholar 

  2. Z. Xu, T. Ye, in Heterocycles, in Natural Product Synthesis, ed. by K.C. Majumdar, S.K. Chattopadhyay (Wiley-VCH, Weinheim, 2011), pp. 459–505

    Google Scholar 

  3. V. Gupta, V. Kant, Sci. Int. 1, 253 (2013)

    Article  CAS  Google Scholar 

  4. F. Sasse, H. Steinmetz, G. Höfle, H. Reichenbach, J. Antibiot. 56, 520 (2003)

    Article  CAS  Google Scholar 

  5. M.Y. Kim, H. Vankayalapati, K. Shin-Ya, K. Wierzba, L.H. Hurley, J. Am. Chem. Soc. 124, 2098 (2002)

    Article  CAS  Google Scholar 

  6. C.B. Mishra, S. Kumari, M. Tiwari, Eur. J. Med. Chem. 92, 1 (2015)

    Article  CAS  Google Scholar 

  7. P.W. Sheldrake, M. Matteucci, E. McDonald, Synlett 2006, 460 (2006)

    Article  Google Scholar 

  8. G.S. Lingaraju, T.R. Swaroop, A.C. Vinayaka, K.S.S. Kumar, M.P. Sadashiva, K.S. Rangappa, Synthesis 44, 1373 (2012)

    Article  CAS  Google Scholar 

  9. D. Castagnolo, M. Pagano, M. Bernardini, M. Botta, Synlett 2009, 2093 (2009)

    Article  Google Scholar 

  10. J.F. Sanz-Cervera, R. Blasco, J. Piera, M. Cynamon, I. Ibáñez, M. Murguía, S. Fustero, J. Org. Chem. 74, 8988 (2009)

    Article  CAS  Google Scholar 

  11. M. Narender, M.S. Reddy, V.P. Kumar, B. Srinivas, R. Sridhar, Y.V.D. Nageswar, K.R. Rao, Synthesis 2007, 3469 (2007)

    Article  Google Scholar 

  12. Y. Ishiwata, H. Togo, Synlett 2008, 2637 (2008)

    Article  Google Scholar 

  13. U. Kazmaier, S. Ackermann, Org. Biomol. Chem. 3, 3184 (2005)

    Article  CAS  Google Scholar 

  14. P.B. Gorepatil, Y.D. Mane, V.S. Ingle, Synlett 24, 2241 (2013)

    Article  CAS  Google Scholar 

  15. Y. Sun, H. Jiang, W. Wu, W. Zeng, X. Wu, Org. Lett. 15, 1598 (2013)

    Article  CAS  Google Scholar 

  16. T.B. Nguyen, L. Ermolenko, W.A. Dean, A. Al-Mourabit, Org. Lett. 14, 5948 (2012)

    Article  CAS  Google Scholar 

  17. T. Guntreddi, R. Vanjari, K.N. Singh, Org. Lett. 17, 976 (2015)

    Article  CAS  Google Scholar 

  18. X. Zhang, W. Zeng, Y. Yang, H. Huang, Y. Liang, Org. Lett. 16, 876 (2014)

    Article  CAS  Google Scholar 

  19. H. Zheng, Y.J. Mei, K. Du, X.T. Cao, P.F. Zhang, Molecules 18, 13425 (2013)

    Article  CAS  Google Scholar 

  20. M. Kodomari, T. Aoyama, Y. Suzuki, Tetrahedron Lett. 43, 1717 (2002)

    Article  CAS  Google Scholar 

  21. S.L. You, J.W. Kelly, Tetrahedron 61, 241 (2005)

    Article  CAS  Google Scholar 

  22. J. Hämmerle, M. Spina, M. Schnürch, M.D. Mihovilovic, P. Stanetty, Synthesis 2008, 3099 (2008)

    Article  Google Scholar 

  23. H. Beyzaei, R. Aryan, H. Moghadas, J. Serbian Chem. Soc. 80, 453 (2015)

    Article  CAS  Google Scholar 

  24. F.L. Chubb, J.T. Edward, Can. J. Chem. 59, 2724 (1981)

    Article  CAS  Google Scholar 

  25. S.M. Al-Mousawi, M.S. Moustafa, M.H. Elnagdi, Arkivoc 2010, 224 (2010)

    Article  Google Scholar 

  26. M. Suresh, P. Lavanya, C.V. Rao, Arab. J. Chem. 9, 136 (2016)

    Article  CAS  Google Scholar 

  27. J. Banothu, K. Vaarla, R. Bavantula, P.A. Crooks, Chin. Chem. Lett. 25, 172 (2014)

    Article  CAS  Google Scholar 

  28. A. Safari, Z. Abedi-Jazini, Z. Zarnegar, M. Sadeghi, J. Nanoparticle Res. 17, 495 (2015)

    Article  Google Scholar 

  29. M.W. Bredenkamp, C.W. Holzapfel, W.J. van Zyl, Syn. Commun. 20, 2235 (1990)

    Article  CAS  Google Scholar 

  30. V.E. Bhingolikar, S.R. Mahalle, S.P. Bondge, R.A. Mane, Indian J. Chem. 44B, 2589 (2005)

    CAS  Google Scholar 

  31. A.S. Shahvelayati, I. Yavari, A.S. Delbari, Chin. Chem. Lett. 25, 119 (2014)

    Article  CAS  Google Scholar 

  32. I. Yavari, A. Malekafzali, S. Seyfi, J. Iran. Chem. Soc. 11, 285 (2014)

    Article  CAS  Google Scholar 

  33. H. Zali-Boeini, S.G. Mansouri, J. Iran. Chem. Soc. 13, 1571 (2016)

    Article  CAS  Google Scholar 

  34. T.M. Potewar, S.A. Ingale, K.V. Srinivasan, Tetrahedron 63, 11066 (2007)

    Article  CAS  Google Scholar 

  35. B.S. Dawane, S.G. Konda, V.T. Kamble, S.A. Chavan, R.B. Bhosale, B.M. Shaikh, Eur. J. Chem. 6, 358 (2009)

    Google Scholar 

  36. S.M. Gomha, K.D. Khalil, Molecules 17, 9335 (2012)

    Article  CAS  Google Scholar 

  37. P.S. Shisode, P.P. Mahulikar, J. Chem. Pharm. Res. 2, 576 (2010)

    CAS  Google Scholar 

  38. L. Zeng, K. Li, F. Huang, X. Zhu, H. Li, Chin. J. Catal. 37, 908 (2016)

    Article  CAS  Google Scholar 

  39. M. Sundrarajan, J. Suresh, R. Gandhi, Dig. J. Nanomater. Biostruct. 7, 983 (2012)

    Google Scholar 

  40. F. Allouche, F. Chabchoub, F. Carta, C.T. Supuran, J. Enzyme Inhib. Med. Chem. 28, 343 (2013)

    Article  Google Scholar 

  41. B. Kaboudin, D. Elhamifar, Synthesis 2006, 224 (2006)

    Article  Google Scholar 

  42. M. Balouiri, M. Sadiki, S.K. Ibnsouda, J. Pharm. Anal. 6, 71 (2016)

    Article  Google Scholar 

  43. P. Giori, A.C. Veronese, C.B. Vicentini, M. Guarneri, J. Heterocycl. Chem. 22, 1093 (1985)

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors would like to thank members of the University of Zabol especially Dr. Mansour Ghaffari-Moghaddam, dean of the faculty of science, for their support and assistance at the various stages of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Beyzaei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beyzaei, H., Aryan, R., Molashahi, H. et al. MgO nanoparticle-catalyzed, solvent-free Hantzsch synthesis and antibacterial evaluation of new substituted thiazoles. J IRAN CHEM SOC 14, 1023–1031 (2017). https://doi.org/10.1007/s13738-017-1052-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-017-1052-x

Keywords

Navigation