Log in

Sonochemical synthesis and characterization of nanostructured copper(I) supramolecular compound as a precursor for the fabrication of pure-phase copper oxide nanoparticles

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

In this investigation, nanoparticles and single crystals of a Cu(I) supramolecular compound, [Cu(dmph)-µ-I]2 (1), [dmph = 2,9-dimethyl-1,10-phenanthroline (neocuproine)], have been synthesized by the reaction of copper(II) acetate, KI and neocuproine as ligand in methanol using sonochemical and heat-gradient methods, respectively. The nanostructure of 1 was characterized by scanning electron microscopy, X-ray powder diffraction, FT-IR spectroscopy and elemental analyses, and the structure of compound 1 was determined by single-crystal X-ray diffraction. The crystal structure of compound 1 has been found to be a binuclear coordination compound. The Cu atoms have slightly distorted tetrahedral geometry with two iodine and two nitrogen coordinated atoms which are trans configuration to each other. Pure phase CuO nanoparticles were simply obtained by calcination of nanosized compound 1 at 700 °C under air atmosphere. This study demonstrates that the supramolecular compounds may be suitable precursors for the simple one-pot preparation of nanoscale metal oxide materials with different and interesting morphologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H.T. Shi, L.M. Qi, J.M. Ma, H.M. Cheng, Polymer-directed synthesis of penniform BaWO4 nanostructures in reverse micelles. J. Am. Chem. Soc. 125, 3450–3451 (2003)

    Article  CAS  Google Scholar 

  2. H. Zhang, D.R. Yang, D.S. Li, X.Y. Ma, S.Z. Li, D.L. Que, Controllable growth of ZnO microcrystals by a cap**-molecule-assisted hydrothermal process. Cryst. Growth Des. 5, 547–550 (2005)

    Article  CAS  Google Scholar 

  3. D.B. Kuang, A.W. Xu, Y.P. Fang, H.Q. Liu, C. Frommen, D. Fenske, Surfactant-assisted growth of novel PbS dendritic nanostructures via facile hydrothermal process. Adv. Mater. 15, 1747–1750 (2003)

    Article  CAS  Google Scholar 

  4. F. Kim, S. Connor, H. Song, T. Kuykendall, P.D. Yang, Platonic gold nanocrystals. Angew. Chem. Int. Ed. 43, 3673–3677 (2004)

    Article  CAS  Google Scholar 

  5. M.-L. Hu, A. Morsali, L. Aboutorabi, Lead(II) carboxylate supramolecular compounds: coordination modes, structures and nano-structures aspects. Coord. Chem. Rev. 255, 2821–2859 (2011)

    Article  CAS  Google Scholar 

  6. R. Chakrabarty, P.S. Mukherjee, P.J. Stang, Supramolecular coordination: self-assembly of finite two- and three-dimensional ensembles. Chem. Rev. 111, 6810–6918 (2011)

    Article  CAS  Google Scholar 

  7. V. Safarifard, A. Morsali, Mechanochemical solid-state transformations from a 3D lead(II) chloride triazole carboxylate coordination polymer to its bromide/thiocyanate analogs via anion-replacements: precursors for the preparation of lead(II) chloride/bromide/sulfide nanoparticles. Cryst. Eng. Comm. 14, 5130–5132 (2012)

    Article  CAS  Google Scholar 

  8. K. Akhbari, A. Morsali, Thallium(I) supramolecular compounds: structural and properties consideration. Coord. Chem. Rev. 254, 1977–2006 (2010)

    Article  CAS  Google Scholar 

  9. A.Y. Robin, K.M. Fromm, Coordination polymer networks with O- and N-donors: what they are, why and how they are made. Coord. Chem. Rev. 250, 2127–2157 (2006)

    Article  CAS  Google Scholar 

  10. T. Uemura, S. Kitagawa, Nanocrystals of coordination polymers. Chem. Lett. 34, 132–137 (2005)

    Article  CAS  Google Scholar 

  11. A. Gedanken, Using sonochemistry for the fabrication of nanomaterials. Ultrason. Sonochem. 11, 47–55 (2004)

    Article  CAS  Google Scholar 

  12. B.S. Wang, H. Zhong, Dichlorido (2,9-dimethyl-1,10-phenanthroline-κ2 N, N′) copper(II). Acta Cryst. E65, m1156 (2009)

    Google Scholar 

  13. N. Akbarzadeh Torbati, A.R. Rezvani, N. Safari, V. Amani, H.R. Khavasi, Dichlorido (2,9-dimethyl-1,10-phenanthroline-κ2 N,N′) cobalt(II). Acta Cryst. E66, m1236 (2010)

    Google Scholar 

  14. A. Dehghani, M.M. Amini, E. Najafi, A. Tadjarodi, B. Notash, Dibromido (2,9-dimethyl-1,10-phenanthroline-κ2 N, N′) zinc. Acta Cryst. E68, m811 (2012)

    Google Scholar 

  15. R. Alizadeh, A. Heidari, R. Ahmadi, V. Amani, Dibromido (2,9-dimethyl-1,10-phenanthroline-κ2 N, N′) mercury(II). Acta Cryst. E65, m483–m484 (2009)

    Google Scholar 

  16. S.A. Shirvan, M. Aghajeri, S. Haydari Dezfuli, F. Khazali, A. Borsalani, Dibromido (2,9-dimethyl-1,10-phenanthroline-κ2 N, N′) cobalt(II) acetonitrile monosolvate. Acta Cryst. E68, m1407 (2012)

    Google Scholar 

  17. J.H. Bang, K.S. Suslick, Applications of ultrasound to the synthesis of nanostructured materials. Adv. Mater. 22, 1039–1059 (2010)

    Article  CAS  Google Scholar 

  18. W.-J. Son, J. Kim, J. Kim, W.-S. Ahn, Sonochemical synthesis of MOF-5. Chem. Commun. 6336–6338 (2008)

  19. L.-G. Qiu, Z.-Q. Li, Y. Wu, W. Wang, T. Xu, X. Jiang, Facile synthesis of nanocrystals of a microporous metal-organic framework by an ultrasonic method and selective sensing of organoamines. Chem. Commun. 3642–3644 (2008)

  20. V. Safarifard, A. Morsali, Sonochemical syntheses of a nanoparticles cadmium(II) supramolecule as a precursor for the synthesis of cadmium(II) oxide nanoparticles. Ultrason. Sonochem. 19, 1227–1233 (2012)

    Article  CAS  Google Scholar 

  21. M. Ranjbar, Ö. Çelik, S.H. Mahmoudi Najafi, S. Sheshmani, N. Akbari Mobarakeh, Synthesis of lead(II) minoxidil coordination polymer: a new precursor for lead(II) oxide and lead(II) hydroxyl bromide. J. Inorg. Organomet. Polym. 22, 837–844 (2012)

    Article  CAS  Google Scholar 

  22. V. Safarifard, A. Morsali, Sonochemical syntheses of a nano-sized copper(II) supramolecule as a precursor for the synthesis of copper(II) oxide nanoparticles. Ultrason. Sonochem. 19, 823–829 (2012)

    Article  CAS  Google Scholar 

  23. D.G. Shchukin, H. Mohwald, Sonochemical nanosynthesis at the engineered interface of a cavitation microbubble. Phys. Chem. Chem. Phys. 8, 3496–3506 (2006)

    Article  CAS  Google Scholar 

  24. L. Aboutorabi, A. Morsali, Sonochemical syntheses and characterization of nano-structured three-dimensional lead(II) coordination polymer constructed of fumaric acid. Ultrason. Sonochem. 18, 407–411 (2011)

    Article  CAS  Google Scholar 

  25. X.G. Zheng, C.N. Xu, Y. Tomokiyo, E. Tanaka, H. Yamada, Y. Soejima, Observation of charge stripes in cupric oxide. Phys. Rev. Lett. 85, 5170–5173 (2000)

    Article  CAS  Google Scholar 

  26. A.B. Kuz’menko, D. van der Marel, P.J.M. van Bentum, C. Presura, A.A. Bush, Infrared spectroscopic study of CuO: signatures of strong spin–phonon interaction and structural distortion. Phys. Rev. B 63, 094303 (2001)

    Article  Google Scholar 

  27. J. Tamaki, K. Shimanoc, Y. Yamada, Y. Yamamoto, N. Miura, N. Yamazoe, Dilute hydrogen sulfide sensing properties of CuO–SnO2 thin film prepared by low-pressure evaporation method. Sens. Actuat. B 49, 121–125 (1998)

    Article  CAS  Google Scholar 

  28. J. Chen, S.Z. Deng, N.S. Xu, W.X. Zhang, X.G. Wen, S.H. Yang, Temperature dependence of field emission from cupric oxide nanobelt films. Appl. Phys. Lett. 83, 746–748 (2003)

    Article  CAS  Google Scholar 

  29. J.T. Chen, F. Zhang, J. Wang, G.A. Zhang, B.B. Miao, X.Y. Fan, D. Yan, P.X. Yan, CuO nanowires synthesized by thermal oxidation route. J. Alloys Compd. 454, 268–273 (2008)

    Article  CAS  Google Scholar 

  30. L. Yu, G. Zang, Y. Wu, X. Bai, D. Guo, Cupric oxide nanoflowers synthesized with a simple solution route and their field emission. J. Cryst. Growth 310, 3125–3130 (2008)

    Article  CAS  Google Scholar 

  31. J. Zhu, H. Bi, Y. Wang, X. Wang, X. Yang, L. Lu, Synthesis of flower-like CuO nanostructures via a simple hydrolysis route. Mater. Lett. 61, 5236–5238 (2007)

    Article  CAS  Google Scholar 

  32. Y.-K. Su, C.-M. Shen, H.-T. Yang, H.-L. Li, H.-J. Gao, Controlled synthesis of highly ordered CuO nanowire arrays by template-based sol–gel route. Trans. Nonferr. Met. Soc. China 17, 783–786 (2007)

    Article  CAS  Google Scholar 

  33. G.-Q. Yuan, H.-F. Jiang, C. Lin, S.-J. Liao, Shape- and size-controlled electrochemical synthesis of cupric oxide nanocrystals. J. Cryst. Growth 303, 400–406 (2007)

    Article  CAS  Google Scholar 

  34. H. Zhang, S. Li, X. Ma, D. Yang, Controllable growth of dendrite-like CuO nanostructures by ethylene glycol assisted hydrothermal process. Mater. Res. Bull. 43, 1291–1296 (2008)

    Article  CAS  Google Scholar 

  35. F. Teng, W. Yao, Y. Zheng, Y. Ma, Y. Teng, T. Xu, S. Liang, Y. Zhu, Synthesis of flower-like CuO nanostructures as a sensitive sensor for catalysis. Sens. Actuat. B 134, 761–768 (2008)

    Article  CAS  Google Scholar 

  36. X. Song, H. Yu, S. Sun, Single-crystalline CuO nanobelts fabricated by a convenient route. J. Colloid Interf. Sci. 289, 588–591 (2005)

    Article  CAS  Google Scholar 

  37. D. Keyson, D.P. Volanti, L.S. Cavalcante, A.Z. Simes, J.A. Varela, E. Longo, CuO urchin-nanostructures synthesized from a domestic hydrothermal microwave method. Mater. Res. Bull. 43, 771–775 (2008)

    Article  CAS  Google Scholar 

  38. X. Xu, M. Zhang, J. Feng, M. Zhang, Shape-controlled synthesis of single-crystalline cupric oxide by microwave heating using an ionic liquid. Mater. Lett. 62, 2787–2790 (2008)

    Article  CAS  Google Scholar 

  39. A. Askarinezhad, A. Morsali, Syntheses and characterization of CdCO3 and CdO nanoparticles by using a sonochemical method. Mater. Lett. 62, 478–482 (2008)

    Article  Google Scholar 

  40. Y. Mu, J. Yang, S. Han, H. Hou, Y. Fan, Syntheses and gas-sensing properties of CuO nanostructures by using [Cu(pbbt)Cl2]2·CH3OH as a precursor. Mater. Lett. 64, 1287–1290 (2010)

    Article  CAS  Google Scholar 

  41. Mercury 1.4.1, Copyright Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, CB2 1EZ, UK, 2001–2005

  42. Bruker, SADABS (Bruker AXS Inc, USA, 2007)

    Google Scholar 

  43. G.M. Sheldrick, A short history of SHELX. Acta Cryst. A64, 112–122 (2008)

    Article  Google Scholar 

  44. A.L. Spek, PLATON, an integrated tool for the analysis of the results of a single crystal structure determination. Acta Cryst. A46, C34 (1990)

    Google Scholar 

  45. L.J. Farrugia, ORTEP-3 for Windows—a version of ORTEP-III with a graphical user interface (GUI). J. Appl. Cryst. 30, 565 (1997)

    Article  CAS  Google Scholar 

  46. A. Morsali, M.Y. Masoomi, Structures and properties of mercury(II) coordination polymers. Coord. Chem. Rev. 253, 1882–1905 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are grateful to Iranian National Science Foundation (INSF) and Iranian Research Organization for Science and Technology (IROST), Payam-e Noor University, and Nanotechnology Initiative Council for their unending effort to provide financial support to undertake this work. Also, the authors are indebted to Dicle University Scientific and Technological Applied and Research Center, Diyarbakir, Turkey, for the use of X-ray diffractometer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Ranjbar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjbar, M., Nabitabar, M., Çelik, Ö. et al. Sonochemical synthesis and characterization of nanostructured copper(I) supramolecular compound as a precursor for the fabrication of pure-phase copper oxide nanoparticles. J IRAN CHEM SOC 12, 551–559 (2015). https://doi.org/10.1007/s13738-014-0512-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-014-0512-9

Keywords

Navigation