Log in

Use of Stem Cells in Wound Healing

  • Wound Care and Healing (H Lev-Tov, Section Editor)
  • Published:
Current Dermatology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review provides an overview of the principal stages of wound healing, the populations of endogenous and therapeutic stem cells, applications of stem cells in specific types of wounds, and current approaches of stem cell delivery for tissue regeneration.

Recent Findings

New uses of progenitor stem cells have been developed for the treatment of wounds. Stem cells improve wound healing through both local and paracrine effects. Stem cell populations of therapeutic utility include embryonic stem cells, induced pluripotent stem cells, adult bone marrow and adipose-derived mesenchymal stem cells, as well as stem cells from skin, cord blood, and extra fetal tissue. Induced pluripotent stem cells mitigate many of the ethical and immunogenic concerns related to use of embryonically derived stem cells.

Summary

Skin, the largest organ in the human body, serves as a protective barrier for mammals. Both aging and disease contribute to loss of skin barrier function, which can result in consequences such as chronic wounds. Recent advances in many types of stem cell therapy may revolutionize treatment of difficult wounds. Optimal techniques for obtaining and delivering stem cells are still being refined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Li Y, Zhang J, Yue J, Gou X, Wu X. Epidermal stem cells in skin wound healing. Adv Wound Care. 2017;6(9):297–307. https://doi.org/10.1089/wound.2017.0728.

    Article  Google Scholar 

  2. Lee DE, Ayoub N, Agrawal DK. Mesenchymal stem cells and cutaneous wound healing: novel methods to increase cell delivery and therapeutic efficacy. Stem Cell Res Ther. 2016;7(1):37. https://doi.org/10.1186/s13287-016-0303-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Eming SA, Martin P, Tomic-Canic M. Wound repair and regeneration: mechanisms, signaling, and translation. Sci Transl Med. 2014;6:265. https://doi.org/10.1126/scitranslmed.3009337.

    Article  CAS  Google Scholar 

  4. Chen M, Przyborowski M, Berthiaume F. Stem cells for skin tissue engineering and wound healing. Crit Rev Biomed Eng. 2009;37(4–5):399–421. https://doi.org/10.1615/critrevbiomedeng.v37.i4-5.50.

    Article  PubMed  PubMed Central  Google Scholar 

  5. McGrath JA, Eady RAJ, Pope FM. Anatomy and organization of human skin. In: Burns T, Breathnach S, Cox N, Griffiths C, editors. Rook’s textbook of dermatology. 7th ed. Hoboken: Blackwell Publishing; 2004. p. 4190. https://doi.org/10.1002/9780470750520.ch3. ISBN 978-0-632-06429-8. Retrieved 2010-06-01.

    Chapter  Google Scholar 

  6. Bouwstra JA, Ponec M. The skin barrier in healthy and diseased state. Biochim Biophys Acta Biomembr. 2006;1758(12):2080–95. https://doi.org/10.1016/j.bbamem.2006.06.021.

    Article  CAS  Google Scholar 

  7. Harvey C. Wound healing. Orthop Nurs. 2005;24(2):143–57.

    Article  Google Scholar 

  8. Gurtner GC, Werner S, Barrandon Y, Longaker MT. Wound repair and regeneration. Nature. 2008;453(7193):314–21.

    Article  CAS  Google Scholar 

  9. Gonzalez ACDO, Costa TF, Andrade ZDA, Medrado ARAP. Wound healing—a literature review. An Bras Dermatol. 2016;91(5):614–20. https://doi.org/10.1590/abd1806-4841.20164741.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Han G, Ceilley R. Chronic wound healing: a review of current management and treatments. Adv Ther. 2017;34(3):599–610. https://doi.org/10.1007/s12325-017-0478-y.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kanji S, Das H. Advances of stem cell therapeutics in cutaneous wound healing and regeneration. Mediat Inflamm. 2017;2017:1–14. https://doi.org/10.1155/2017/5217967.

    Article  CAS  Google Scholar 

  12. Jaks V, Barker N, Kasper M, van Es JH, Snippert HJ, Clevers H, et al. Lgr5 marks cycling, yet long-lived, hair follicle stem cells. Nat Genet. 2008;40(11):1291–9. https://doi.org/10.1038/ng.239.

    Article  CAS  PubMed  Google Scholar 

  13. Cerqueira MT, Pirraco RP, Marques AP. Stem cells in skin wound healing: are we there yet? Adv Wound Care. 2016;5(4):164–75. https://doi.org/10.1089/wound.2014.0607.

    Article  Google Scholar 

  14. Bergen TV, Velde SVD, Vandewalle E, Moons L, Stalmans I. Improving patient outcomes following glaucoma surgery: state of the art and future perspectives. Clin Ophthalmol. 2014:857. https://doi.org/10.2147/opth.s48745.

  15. Beitz JM. Pharmacologic impact (aka “breaking bad”) of medications on wound healing and wound development: a literature-based overview. Advances in pediatrics. https://www.ncbi.nlm.nih.gov/pubmed/28355136. Published March 2017. Accessed 6 June 2018.

  16. Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M. Perspective article: growth factors and cytokines in wound healing. Wound Repair Regen. 2008;16(5):585–601. https://doi.org/10.1111/j.1524-475x.2008.00410.x.

    Article  PubMed  Google Scholar 

  17. Guo S, Dipietro L. Factors affecting wound healing. J Dent Res. 2010;89(3):219–29. https://doi.org/10.1177/0022034509359125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Werner S, Grose R. Regulation of wound healing by growth factors and cytokines. Physiol Rev. 2003;83(3):835–70.

    Article  CAS  Google Scholar 

  19. Smola H, Thiekotter G, Fusenig NE. Mutual induction of growth factor gene expression by epidermal-dermal cell interaction. J Cell Biol. 1993;122(2):417–29.

    Article  CAS  Google Scholar 

  20. Kumar A, Mohanty S, Gupta S, Paulkhurana SM. Stem cells of the hair follicular tissue: application in cell based therapy for vitiligo. Hair Ther Transplant. 2015;05(01). https://doi.org/10.4172/2167-0951.1000132.

  21. Snippert HJ, Haegebarth A, Kasper M, Jaks V, van Es JH, Barker N, et al. Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin. Science. 2010;327(5971):1385–9. https://doi.org/10.1126/science.1184733.

    Article  CAS  PubMed  Google Scholar 

  22. Woo W-M, Oro AE. SnapShot: hair follicle stem cells. Cell. 2011;146(2):334–334.e2. https://doi.org/10.1016/j.cell.2011.07.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chu G-Y, Chen Y-F, Chen H-Y, Chan M-H, Gau C-S, Weng S-M. Stem cell therapy on skin: mechanisms, recent advances and drug reviewing issues. J Food Drug Anal. 2018;26(1):14–20. https://doi.org/10.1016/j.jfda.2017.10.004.

    Article  CAS  PubMed  Google Scholar 

  24. Opalenik SR, Davidson JM. Fibroblast differentiation of bone marrow-derived cells during wound repair. FASEB J. 2005;19(11):1561–3. https://doi.org/10.1096/fj.04-2978fje.

    Article  CAS  PubMed  Google Scholar 

  25. Fathke C. Contribution of bone marrow-derived cells to skin: collagen deposition and wound repair. Stem Cells. 2004;22(5):812–22. https://doi.org/10.1634/stemcells.22-5-812.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ito M, Yang Z, Andl T, Cui C, Kim N, Millar SE, et al. Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding. Nature. 2007;447(7142):316–20. https://doi.org/10.1038/nature05766.

    Article  CAS  PubMed  Google Scholar 

  27. Shi Y, Shu B, Yang R, et al. Wnt and Notch signaling pathway involved in wound healing by targeting c-Myc and Hes1 separately. Stem Cell Res Ther. 2015;6(1):120. https://doi.org/10.1186/s13287-015-0103-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Whyte JL, Smith AA, Liu B, Manzano WR, Evans ND, Dhamdhere GR, et al. Augmenting endogenous Wnt signaling improves skin wound healing. PLoS One. 2013;8(10):e76883. https://doi.org/10.1371/journal.pone.0076883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wong VW, Levi B, Rajadas J, Longaker MT, Gurtner GC. Stem cell niches for skin regeneration. Int J Biomater. 2012;2012:1–8. https://doi.org/10.1155/2012/926059.

    Article  CAS  Google Scholar 

  30. Agrawal GK, Jwa N-S, Lebrun M-H, Job D, Rakwal R. Plant secretome: unlocking secrets of the secreted proteins. Proteomics. 2010;10(4):799–827. https://doi.org/10.1002/pmic.200900514.

    Article  CAS  PubMed  Google Scholar 

  31. Baraniak PR, Mcdevitt TC. Stem cell paracrine actions and tissue regeneration. Regen Med. 2010;5(1):121–43. https://doi.org/10.2217/rme.09.74.

    Article  PubMed  PubMed Central  Google Scholar 

  32. • Denu RA, Nemcek S, Bloom DD, et al. Fibroblasts and mesenchymal stromal/stem cells are phenotypically indistinguishable. Acta Haematol. 2016;136(2):85–97. https://doi.org/10.1159/000445096 This study demonstrates indistinguishable cell surface makers and morphology between fibroblasts and mesenchymal stem cells. This supports our understanding that MSCs parallel fibroblasts in their wound healing capacity: both cell types secrete extracellular matrix and suppress the inflammatory cascade.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Duscher D, Barrera J, Wong VW, Maan ZN, Whittam AJ, Januszyk M, et al. Stem cells in wound healing: the future of regenerative medicine? A mini-review. Gerontology. 2015;62(2):216–25. https://doi.org/10.1159/000381877.

    Article  CAS  PubMed  Google Scholar 

  34. Dominici M, Blanc KL, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–7. https://doi.org/10.1080/14653240600855905.

    Article  CAS  Google Scholar 

  35. Gorskaya YF, Fridenshtein AY, Kulagina NN. Precursor cells of fibroblasts detected by in vitro cloning of cells from hematopoietic organs of normal and irradiated mice. Bull Exp Biol Med. 1976;81(5):765–8. https://doi.org/10.1007/bf00797159.

    Article  Google Scholar 

  36. Gimble J, Guilak F. Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy. 2003;5(5):362–9. https://doi.org/10.1080/14653240310003026.

    Article  PubMed  Google Scholar 

  37. Meliga E, Strem BM, Duckers HJ, Serruys PW. Adipose-derived cells. Cell Transplant. 2007;16(9):963–70. https://doi.org/10.3727/096368907783338190.

    Article  PubMed  Google Scholar 

  38. Jones EA, English A, Henshaw K, Kinsey SE, Markham AF, Emery P, et al. Enumeration and phenotypic characterization of synovial fluid multipotential mesenchymal progenitor cells in inflammatory and degenerative arthritis. Arthritis Rheum. 2004;50(3):817–27. https://doi.org/10.1002/art.20203.

    Article  PubMed  Google Scholar 

  39. Rezvani HR, Ali N, Nissen LJ, Harfouche G, de Verneuil H, Taïeb A, et al. HIF-1a in epidermis: oxygen sensing, cutaneous angiogenesis, cancer, and non-cancer disorders. J Investig Dermatol. 2011;131:1793–805.

    Article  CAS  Google Scholar 

  40. Frenette PS, Pinho S, Lucas D, Scheiermann C. Mesenchymal stem cell: keystone of the hematopoietic stem cell niche and a step**-stone for regenerative medicine. Annu Rev Immunol. 2013;31(1):285–316. https://doi.org/10.1146/annurev-immunol-032712-095919.

    Article  PubMed  Google Scholar 

  41. Chen L, Tredget EE, Wu PYG, Wu Y. Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS One. 2008;3(4):e1886. https://doi.org/10.1371/journal.pone.0001886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wu Y, Zhao RC, Tredget EE. Concise review: bone marrow-derived stem/progenitor cells in cutaneous repair and regeneration. Stem Cells. 2010;28:905–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Falanga V, Iwamoto S, Chartier M, Yufit T, Butmarc J, Kouttab N, et al. Autologous bone marrow derived cultured mesenchymal stem cells delivered in a fibrin spray accelerate healing in murine and human cutaneous wounds. Tissue Eng. 2007;13:1299–312.

    Article  CAS  Google Scholar 

  44. • Summa PGD, Schiraldi L, Cherubino M, et al. Adipose derived stem cells reduce fibrosis and promote nerve regeneration in rats. The Anatomical Record. 2018. https://doi.org/10.1002/ar.23841 This study illustrates the therapeutic potential of adipose derived stem cells by demonstrating reduced scar formation and increased nerve regeneration.

    Article  Google Scholar 

  45. Altman AM, Matthias N, Yan Y, et al. Dermal matrix as a carrier for in vivo delivery of human adipose-derived stem cells. Biomaterials. 2008;29(10):1431–42.

    Article  CAS  Google Scholar 

  46. Riccobono D, Agay D, Scherthan H, Forcheron F, Vivier M, Ballester B, et al. Application of adipocyte-derived stem cells in treatment of cutaneous radiation syndrome. Health Phys. 2012;103(2):120–6.

    Article  CAS  Google Scholar 

  47. Alexaki V-I, Simantiraki D, Panayiotopoulou M, Rasouli O, Venihaki M, Castana O, et al. Adipose tissue-derived mesenchymal cells support skin reepithelialization through secretion of KGF-1 and PDGF-BB: comparison with dermal fibroblasts. Cell Transplant. 2012;21(11):2441–54. https://doi.org/10.3727/096368912x637064.

    Article  PubMed  Google Scholar 

  48. Anker PSI’t. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood. 2003;102(4):1548–9. https://doi.org/10.1182/blood-2003-04-1291.

    Article  Google Scholar 

  49. Alviano F, Fossati V, Marchionni C, Arpinati M, Bonsi L, Franchina M, et al. Term amniotic membrane is a high throughput source for multipotent mesenchymal stem cells with the ability to differentiate into endothelial cells in vitro. BMC Dev Biol. 2007;7:11.

    Article  Google Scholar 

  50. Kim W-S, Park B-S, Sung J-H, Yang JM, Park SB, Kwak SJ, et al. Wound healing effect of adipose-derived stem cells: a critical role of secretory factors on human dermal fibroblasts. J Dermatol Sci. 2007;48(1):15–24. https://doi.org/10.1016/j.jdermsci.2007.05.018.

    Article  CAS  PubMed  Google Scholar 

  51. Guenou H, Nissan X, Larcher F, Feteira J, Lemaitre G, Saidani M, et al. Human embryonic stem-cell derivatives for full reconstruction of the pluristratified epidermis: a preclinical study. Lancet. 2009;374(9703):1745–53. https://doi.org/10.1016/s0140-6736(09)61496-3.

    Article  CAS  PubMed  Google Scholar 

  52. Douglas CW. Embryonic stem cell transplantation: potential applicability in cell replacement therapy and regenerative medicine. Front Biosci. 2007;12(8–12):4525. https://doi.org/10.2741/2407.

    Article  Google Scholar 

  53. Lo B, Parham L. Ethical issues in stem cell research. Endocr Rev. 2009;30(3):204–13. https://doi.org/10.1210/er.2008-0031.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.

    Article  CAS  Google Scholar 

  55. Aasen T, Raya A, Barrero MJ, Garreta E, Consiglio A, Gonzalez F, et al. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol. 2008;26:1276–84.

    Article  CAS  Google Scholar 

  56. Tsai S-Y, Clavel C, Kim S, Ang YS, Grisanti L, Lee DF, et al. Oct4 and Klf4 reprogram dermal papilla cells into induced pluripotent stem cells. In: Stem Cells; 2009. https://doi.org/10.1002/stem.281.

    Chapter  Google Scholar 

  57. Sebastiano V, Zhen HH, Haddad B, Bashkirova E, Melo SP, Wang P, et al. Human COL7A1-corrected induced pluripotent stem cells for the treatment of recessive dystrophic epidermolysis bullosa. Sci Transl Med. 2014;6(264):264ra163. https://doi.org/10.1126/scitranslmed.3009540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Umegaki-Arao N, Pasmooij AMG, Itoh M, Cerise JE, Guo Z, Levy B, et al. Induced pluripotent stem cells from human revertant keratinocytes for the treatment of epidermolysis bullosa. Sci Transl Med. 2014;6(264):264ra164. https://doi.org/10.1126/scitranslmed.3009342.

    Article  CAS  PubMed  Google Scholar 

  59. Macneil S. Progress and opportunities for tissue-engineered skin. Nature. 2007;445(7130):874–80. https://doi.org/10.1038/nature05664.

    Article  CAS  PubMed  Google Scholar 

  60. Werdin F, Tenenhaus M, Rennekampff H-O. Chronic wound care. Lancet. 2008;372(9653):1860–2. https://doi.org/10.1016/s0140-6736(08)61793-6.

    Article  PubMed  Google Scholar 

  61. Steed DL, Attinger C, Colaizzi T, Crossland M, Franz M, Harkless L, et al. Guidelines for the treatment of diabetic ulcers. Wound Repair Regen. 2006;14(6):680–92.

    Article  Google Scholar 

  62. Robson MC, Barbul A. Guidelines for the best care of chronic wounds. Wound Repair Regen. 2006;14(6):647–8.

    Article  Google Scholar 

  63. Krasnodembskaya A, Song Y, Fang X, et al. Antibacterial effect of human mesenchymal stem cells is mediated in part from secretion of the antimicrobial peptide LL-37. Stem Cells. 2010;28(12):2229–38.

    Article  CAS  Google Scholar 

  64. Ren G, Zhang L, Zhao X, Xu G, Zhang Y, Roberts AI, et al. Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell. 2008;2(2):141–50. https://doi.org/10.1016/j.stem.2007.11.014.

    Article  CAS  PubMed  Google Scholar 

  65. Liu L, Yu Y, Hou Y, et al. Human umbilical cord mesenchymal stem cells transplantation promotes cutaneous wound healing of severe burned rats. PLoS One. 9(2):e88348, 2014.

    Article  Google Scholar 

  66. Németh K, Leelahavanichkul A, Yuen PST, Mayer B, Parmelee A, Doi K, et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E2-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med. 2008;15(1):42–9. https://doi.org/10.1038/nm.1905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Benbernou N, Esnault S, Shin HCK, Fekkar H, Guenounou M. Differential regulation of IFN-gamma, IL-10 and inducible nitric oxide synthase in human T cells by cyclic AMP-dependent signal transduction pathway. Immunology. 1997;91(3):361–8. https://doi.org/10.1046/j.1365-2567.1997.00260.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Natesan S, Zamora DO, Wrice NL, Baer DG, Christy RJ. Bilayer hydrogel with autologous stem cells derived from debrided human burn skin for improved skin regeneration. J Burn Care Res. 2013;34(1):18–30.

    Article  Google Scholar 

  69. Watt FM, Lo Celso C, Silva-Vargas V. Epidermal stem cells: an update. Curr Opin Genet Dev. 2006;16:518–24.

    Article  CAS  Google Scholar 

  70. Yang Y, Zhang W, Li Y, Fang G, Zhang K. Scalded skin of rat treated by using fibrin glue combined with allogeneic bone marrow mesenchymal.

  71. Hu C, Yong X, Li C, Lü M, Liu D, Chen L, et al. CXCL12/CXCR4 axis promotes mesenchymal stem cell mobilization to burn wounds and contributes to wound repair. J Surg Res. 2013;183(1):427–34. https://doi.org/10.1016/j.jss.2013.01.019.

    Article  CAS  PubMed  Google Scholar 

  72. Basu S, Ali H, Sangwan VS. Clinical outcomes of repeat autologous cultivated limbal epithelial transplantation for ocular surface burns. Am J Ophthalmol. 2012;153(4). https://doi.org/10.1016/j.ajo.2011.09.016.40.

  73. Rasulov MF, Vasilenko VT, Zaidenov VA, Onishchenko NA. Cell transplantation inhibits inflammatory reaction and stimulates repair processes in burn wound. Bull Exp Biol Med. 2006;142(1):112–5. https://doi.org/10.1007/s10517-006-0306-x.

    Article  CAS  PubMed  Google Scholar 

  74. Collawn SS, Banerjee NS, de la Torre J, Vasconez L, Chow LT. Adipose-derived stromal cells accelerate wound healing in an organotypic raft culture model. Ann Plast Surg. 2012;68(5):501–4. https://doi.org/10.1097/SAP.0b013e31823b69fc.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Shortt AJ, Secker GA, Notara MD, Limb GA, Khaw PT, Tuft SJ, et al. Transplantation of ex vivo cultured limbal epithelial stem cells: a review of techniques and clinical results. Surv Ophthalmol. 2007;52(5):483–502. https://doi.org/10.1016/j.survophthal.2007.06.013.

    Article  PubMed  Google Scholar 

  76. Dua HS, Azuara-Blanco A. Limbal stem cells of the corneal epithelium. Surv Ophthalmol. 2000;44(5):415–25.

    Article  CAS  Google Scholar 

  77. Cohn Yakubovich D, Sheyn D, Bez M, Schary Y, Yalon E, Sirhan A, et al. Systemic administration of mesenchymal stem cells combined with parathyroid hormone therapy synergistically regenerates multiple rib fractures. Stem Cell Res Ther. 2017;8:51. https://doi.org/10.1186/s13287-017-0502-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Garg RK, Rennert RC, Duscher D, Sorkin M, Kosaraju R, Auerbach LJ, et al. Capillary force seeding of hydrogels for adipose-derived stem cell delivery in wounds. Stem Cells Transl Med. 2014;3(9):1079–89. https://doi.org/10.5966/sctm.2014-0007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Rustad KC, Wong VW, Sorkin M, Glotzbach JP, Major MR, Rajadas J, et al. Enhancement of mesenchymal stem cell angiogenic capacity and stemness by a biomimetic hydrogel scaffold. Biomaterials. 2012;33(1):80–90. https://doi.org/10.1016/j.biomaterials.2011.09.041.

    Article  CAS  PubMed  Google Scholar 

  80. Stem cell basics. Sigma-Aldrich. https://www.sigmaaldrich.com/technical-documents/articles/biology/what-are-stem-cells.html. Accessed 5 June 2018.

  81. Little M-T, Storb R. History of haematopoietic stem-cell transplantation. Nature News. https://www.nature.com/articles/nrc748. Published March 1, 2002. Accessed 5 June 2018.

  82. Markers & methods to verify mesenchymal stem cell identity, potency, & quality. R&D Systems. https://www.rndsystems.com/resources/articles/markers-and-methods-verify-mesenchymal-stem-cell-identity-potency-and-quality. Accessed 5 June 2018.

  83. Boston Children's Hospital. Boston Children’s Hospital. http://stemcell.childrenshospital.org/about-stem-cells/history/. Accessed 5 June 2018.

  84. Bello YM, Falabella AF, Eaglstein WH. Tissue-engineered skin. Am J Clin Dermatol. 2001;2(5):305–13. https://doi.org/10.2165/00128071-200102050-00005.

    Article  CAS  PubMed  Google Scholar 

  85. Marston WA, Hanft J, Norwood P, Pollak R. The efficacy and safety of dermagraft in improving the healing of chronic diabetic foot ulcers: results of a prospective randomized trial. Diabetes Care. 2003;26(6):1701–5. https://doi.org/10.2337/diacare.26.6.1701.

    Article  PubMed  Google Scholar 

  86. Wheeland RG. The technique and current status of pinch grafting. J Dermatol Surg Oncol. 1987;13(8):873–81. https://doi.org/10.1111/j.1524-4725.1987.tb00564.x.

    Article  CAS  PubMed  Google Scholar 

  87. • Osborne SN, Schmidt MA, Harper JR. An automated and minimally invasive tool for generating autologous viable epidermal micrografts. Adv Skin Wound Care. 2016;29(2):57–64. https://doi.org/10.1097/01.ASW.0000476072.88818.aa This study outlines a novel, minimally invasive epidermal harvesting tool that aids in rapid wound healing and reduced scarring at both donor and recipient graft sites.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer Powers.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Wound Care and Healing

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aronson, A., Laageide, L. & Powers, J. Use of Stem Cells in Wound Healing. Curr Derm Rep 7, 278–286 (2018). https://doi.org/10.1007/s13671-018-0233-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13671-018-0233-x

Keywords

Navigation