Log in

Microstructural Changes During Static Recrystallization of Austenitic Stainless Steel 304L: Cellular Automata Simulation

  • Technical Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

Static recrystallization and microstructural changes in austenitic stainless steel 304L were studied. The rolling experiments at 200 °C were carried out, and then, annealing treatment was made at temperatures ranging between 500 and 830 °C. A model was also developed to simulate the kinetics of non-isothermal recrystallization within the rolled steel. The distribution of plastic strains during rolling was predicted utilizing an elastic–plastic finite element formulation performed in ABAQUS/Explicit, while the predicted results were used to generate the as-rolled microstructure and to estimate the stored energy. Finally, microstructural–thermal model based on cellular automata was developed to evaluate the rate of static recrystallization within the rolled steel. The comparison between experimental and simulations showed a good consistency. The predictions illustrated that inhomogeneous distribution of plastic strain was produced during multi-pass rolling leading to different rates of recrystallization in the center and the surface regions of the rolled plate. The onset temperature of recrystallization was found about 700 °C, and the activation energies for nucleation and growth for recrystallization were determined as 180 kJ/mol and 240 kJ/mol, respectively. It was found that homogenous nucleation mechanism can be operative in recrystallization of multi-pass rolled steel, i.e., for reduction of 40% or higher.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. I. Shakhova, V. Dudko, A. Belyakov, K. Tsuzaki, R. Kaibyshev, Effect of large strain cold rolling and subsequent annealing on microstructure and mechanical properties of an austenitic stainless steel. Mater. Sci. Eng. A 545, 176–186 (2012)

    Article  CAS  Google Scholar 

  2. N. Solomon, I. Solomon, Deformation induced martensite in AISI 316 stainless steel. Rev. Metal. Madrid 46, 121–128 (2010)

    Article  CAS  Google Scholar 

  3. F. Stachowicz, T. Trzepiecinski, Warm forming of stainless steel sheet. Arch. Civ. Mech. Eng. 10, 85–94 (2010)

    Article  Google Scholar 

  4. P. Pourabdollah, S. Serajzadeh, A study on deformation behavior of 304 l stainless steel during and after plate rolling at elevated temperatures. J. Mater. Eng. Perform. 26, 885–893 (2017)

    Article  CAS  Google Scholar 

  5. M. Odnobokovaa, A. Belyakova, N. Enikeevb, D.A. Molodovc, R. Kaibyshev, Annealing behavior of a 304L stainless steel processed by large strain cold and warm rolling. Mater. Sci. Eng. A 689, 370–383 (2017)

    Article  Google Scholar 

  6. Z. Yanushkevich, S.V. Dobatkin, A. Belyakov, R. Kaibyshev, Hall–Petch relationship for austenitic stainless steels processed by large strain warm rolling. Acta Mater. 136, 39–48 (2017)

    Article  CAS  Google Scholar 

  7. C. Zheng, N. **ao, D. Li, Y. Li, Mesoscopic modeling of austenite static recrystallization in a low carbon steel using a coupled simulation method. Comput. Mater. Sci. 45, 568–575 (2009)

    Article  CAS  Google Scholar 

  8. L. Madej, M. Sitko, A. Legwand, K. Perzynski, K. Michalik, Development and evaluation of data transfer protocols in the fully coupled random cellular automata finite element model of dynamic recrystallization. J. Comput. Sci. 26, 66–77 (2018)

    Article  Google Scholar 

  9. Y.C. Lin, Y. Liu, M. Chen, M. Huang, X. Ma, Z. Long, Study of static recrystallization behavior in hot deformed Ni-based superalloy using cellular automaton model. Mater. Des. 99, 107–114 (2016)

    Article  CAS  Google Scholar 

  10. Y. Liu, Y.C. Lin, H. Li, D. Wen, X. Chen, M. Chen, Study of dynamic recrystallization in a Ni-based superalloy by experiments and cellular automaton model. Mater. Sci. Eng. A 626, 432–440 (2015)

    Article  CAS  Google Scholar 

  11. F. Han, T. Hongchao, K. **shan, L.Y. Feng, Cellular automata modeling of static recrystallization based on the curvature driven subgrain growth mechanism. J. Mater. Sci. 48, 7142–7152 (2013)

    Article  CAS  Google Scholar 

  12. F. Chen, K. Qi, Z. Cui, X. Lai, Modeling the dynamic recrystallization in austenitic stainless steel using cellular automaton method. Comput. Mater. Sci. 83, 331–340 (2014)

    Article  CAS  Google Scholar 

  13. Y. Zhi, X. Liu, H. Yu, Cellular automaton simulation of hot deformation of TRIP steel. Comput. Mater. Sci. 81, 104–112 (2014)

    Article  CAS  Google Scholar 

  14. C. Zheng, N. **ao, D. Li, Y. Li, Microstructure prediction of the austenite recrystallization during multi-pass steel strip hot rolling: a cellular automaton modeling. Comput. Mater. Sci. 44, 507–514 (2008)

    Article  CAS  Google Scholar 

  15. M. Seyed Salehi, S. Serajzadeh, Simulation of static recrystallization in non-isothermal annealing using a coupled cellular automata and finite element model. Comput. Mater. Sci. 53, 145–152 (2012)

    Article  CAS  Google Scholar 

  16. R.J. Contieri, M. Zanotello, R. Caram, Simulation of CP-Ti recrystallization and grain growth by a cellular automata algorithm: simulated versus experimental results. Mater. Res. 20, 688–701 (2017)

    Article  CAS  Google Scholar 

  17. S. Kobayashi, Metal Forming and the Finite Element Method (Oxford University Press, Oxford, 1989)

    Google Scholar 

  18. T. Belytschko, W.K. Liu, B. Moran, Nonlinear Finite Elements for Continua and Structures (Wiley, Hoboken, 2000)

    Google Scholar 

  19. M.M. Farag, Selection of Materials and Manufacturing Processes for Engineering Design (Prentice Hall, Upper Saddle River, 1989)

    Google Scholar 

  20. S.L. Semiatin, J.H. Holbrook, Plastic flow phenomenology of 304 l stainless steel. Metall. Trans. A 14A, 1681–1695 (1983)

    Article  Google Scholar 

  21. R.-B. Mei, C.-S. Li, X.-H. Liu, H. Bin, Analysis of strip temperature in hot rolling process by finite element method. J. Iron. Steel Res. Int. 17, 17–21 (2010)

    Article  Google Scholar 

  22. K.G.F. Janssens, D. Raabe, Computational Materials Science (Elsevier, London, 2007)

    Google Scholar 

  23. N. **ao, C. Zheng, D. Li, Y. Li, A simulation of dynamic recrystallization by coupling a cellular automaton method with a topology deformation technique. Comput. Mater. Sci. 41, 366–374 (2008)

    Article  CAS  Google Scholar 

  24. H. Monshat, S. Serajzadeh, Simulation of austenite decomposition in continuous cooling conditions: a cellular automata-finite element modeling. Ironmak. Steelmak. 1, 1 (2019). https://doi.org/10.1080/03019233.2017.1405178

    Article  CAS  Google Scholar 

  25. D.J. Srolovitz, G.S. Grest, M.P. Anderson, Computer simulation of recrystallization—II. Heterogeneous nucleation and growth. Acta Metall. 36(8), 2115–2128 (1988)

    Article  CAS  Google Scholar 

  26. P.J. Hurley, F.J. Humphreys, Modeling the recrystallization of single-phase aluminum. Acta Mater. 51, 3779–3793 (2003)

    Article  CAS  Google Scholar 

  27. X. Song, M. Rettenmayr, C. Müller, H.E. Exner, Modeling of recrystallization after inhomogeneous deformation. Metall. Mater. Trans. 32A, 2199–2206 (2001)

    Article  CAS  Google Scholar 

  28. S.N.S. Mortazavi, S. Serajzadeh, Simulation of non-isothermal recrystallization kinetics in cold-rolled steel. Multiscale Multidiscip. Model. Exp. Des. 2, 23–33 (2019)

    Article  Google Scholar 

  29. K. Kremeyer, Cellular automata investigations of binary solidification. J. Comput. Phys. 142, 243–262 (1998)

    Article  CAS  Google Scholar 

  30. F.L. Stasa, Applied Finite Element Analysis for Engineers (CBS Publishing, Tokyo, 1985)

    Google Scholar 

  31. S. Shabaniverki, S. Serajzadeh, Simulation of softening kinetics and microstructural events in aluminum alloy subjected to single and multi-pass rolling operations. Appl. Math. Model. 40, 7571–7582 (2016)

    Article  Google Scholar 

  32. J. Gopal, C. Pandey, M. Mohan, R.S. Mulik, An assessment for mechanical and microstructure behavior of dissimilar material welded joint between nuclear grade martensitic P91 and austenitic SS304 L steel. J. Manuf. Process. 48C, 249–259 (2019)

    Google Scholar 

  33. K. Nohara, O. Yutaka, N. Ohashi, Composition and grain size dependencies of strain-induced martensitic transformation in metastable austenitic stainless steels. Tetsu-to-Hagané 63, 772–782 (1977)

    Article  CAS  Google Scholar 

  34. R.E. Schramm, R.P. Reed, Stacking fault energies of seven commercial austenitic stainless steels. Metall. Trans. A 6, 1345–1351 (1975)

    Article  Google Scholar 

  35. J. Humphreys, M. Hartherly, Recrystallization and Related Annealing Phenomena (Pergamon Press, Oxford, 2004)

    Google Scholar 

  36. N. Hirota, F. Yin, T. Inoue, T. Azuma, Recrystallization and grain growth behavior in severe cold-rolling deformed SUS316L steel under anisothermal. ISIJ Int. 48(4), 475–482 (2008)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Serajzadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alavi, P., Serajzadeh, S. Microstructural Changes During Static Recrystallization of Austenitic Stainless Steel 304L: Cellular Automata Simulation. Metallogr. Microstruct. Anal. 9, 223–238 (2020). https://doi.org/10.1007/s13632-020-00623-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-020-00623-8

Keywords

Navigation