Log in

Microenvironmental elements singularity synergistically regulate the behavior and chemosensitivity of endometrioid carcinoma

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

The importance of the microenvironment is widely recognized as it regulates not only malignant cell behavior but also drug sensitivity. The cancer cell microenvironment is composed of biological, physical and chemical elements, and simultaneous reproduction of these three elements are important conditions investigated in cancer research. In the present study, we focused on the epidemiological and anatomical specificities of endometrioid carcinoma, obesity (biological), fluid flow (physical) and anticancer agents (chemical) to target the specific microenvironmental elements of endometrioid carcinoma. To elucidate the individual effects of these elements on endometrioid carcinoma and to investigate the relationships between these factors, we developed an adipose tissue fragments (ATFs)-embedded cell disc under a rotational culture method to generate carcinoma-stroma interactions and to create fluid flow. ATFs and fluid flow individually or synergistically influenced proliferative cellular behavior and the morphological changes underlying endometrioid carcinoma. ATFs and fluid flow also governed the expression of extracellular signal-regulated kinase and p38 signaling synergistically or individually, depending on the endometrioid carcinoma cell type. Adipose tissue induced chemoresistance to cis-diamminedichloro-platinum (CDDP) in endometrioid cancer, but the resistance effect was abolished by fluid flow. Thus, a simple reconstructed model was established to investigate three elements of the microenvironment of endometrioid carcinoma in vitro. This culture model unequivocally demonstrated the individual and synergistic effects of the three elements on endometrioid carcinoma. This new culture model is a promising tool for elucidating the mechanisms underlying endometrioid carcinoma and for develo** further treatment strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. World Health Organization. Female genital tumours 5th edn. Lyon, France. International Agency for Research on Cancer. Geneva, Switzerland: Print copies are distributed by WHO Press; 2020.

  2. Clement PB, Young RH. Endometrioid carcinoma of the uterine corpus: a review of its pathology with emphasis on recent advances and problematic aspects. Adv Anat Pathol. 2002;9:145–84.

    Article  PubMed  Google Scholar 

  3. Nevadunsky NS, Van Arsdale A, Strickler HD, et al. Obesity and age at diagnosis of endometrial cancer. Obstet Gynecol. 2014;124:300–6.

    Article  PubMed  Google Scholar 

  4. Feng Y-H. The association between obesity and gynecological cancer. Gynecol Minim Invasive Ther. 2015;4:102–5.

    Article  Google Scholar 

  5. Unamuno X, Gómez-Ambrosi J, Rodríguez A, Becerril S, Frühbeck G, Catalán V. Adipokine dysregulation and adipose tissue inflammation in human obesity. Eur J Clin Invest. 2018;48: e12997.

    Article  PubMed  Google Scholar 

  6. Matsuzawa Y. Adiponectin: a key player in obesity related disorders. Curr Pharm Des. 2010;16:1896–901.

    Article  CAS  PubMed  Google Scholar 

  7. Frühbeck G, Catalán V, Rodríguez A, Gómez-Ambrosi J. Adiponectin-leptin ratio: a promising index to estimate adipose tissue dysfunction. Relation with obesity-associated cardiometabolic risk. Adipocyte. 2018;7:57–62.

    Article  PubMed  Google Scholar 

  8. Prieto-Hontoria PL, Pérez-Matute P, Fernández-Galilea M, Bustos M, Martínez JA, Moreno-Aliaga MJ. Role of obesity-associated dysfunctional adipose tissue in cancer: a molecular nutrition approach. Biochim Biophys Acta (BBA) Bioenerg. 2011;1807:664–78.

    Article  CAS  Google Scholar 

  9. Balkwill FR, Capasso M, Hagemann T. The tumor microenvironment at a glance. J Cell Sci. 2012;125:5591–6.

    Article  CAS  PubMed  Google Scholar 

  10. Hinshaw DC, Shevde LA. The tumor microenvironment innately modulates cancer progression. Cancer Res. 2019;79:4557–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wu T, Dai Y. Tumor microenvironment and therapeutic response. Cancer Lett. 2017;387:61–8.

    Article  CAS  PubMed  Google Scholar 

  12. Senthebane DA, Rowe A, Thomford NE, et al. The role of tumor microenvironment in chemoresistance: to survive, keep your enemies closer. Int J Mol Sci. 2017;18:1586.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Maia J, Caja S, Strano Moraes MC, Couto N, Costa-Silva B. Exosome-based cell-cell communication in the tumor microenvironment. Front Cell Dev Biol. 2018;6:18.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Komohara Y, Takeya M. CAFs and TAMs: maestros of the tumour microenvironment. J Pathol. 2017;241:313–5.

    Article  CAS  PubMed  Google Scholar 

  15. Mitchell MJ, King MR. Computational and experimental models of cancer cell response to fluid shear stress. Front Oncol. 2013;3:44.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Repasky EA, Evans SS, Dewhirst MW. Temperature matters! And why it should matter to tumor immunologists. Cancer Immunol Res. 2013;1:210–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Trédan O, Galmarini CM, Patel K, Tannock IF. Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst. 2007;99:1441–54.

    Article  PubMed  Google Scholar 

  18. Landskron G, De la Fuente M, Thuwajit P, Thuwajit C, Hermoso MA. Chronic inflammation and cytokines in the tumor microenvironment. J Immunol Res. 2014;2014:149185.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Matsumoto M, Yamaguchi Y, Seino Y, et al. Estrogen signaling ability in human endometrial cancer through the cancer–stromal interaction. Endocr Relat Cancer. 2008;15:451–63.

    Article  CAS  PubMed  Google Scholar 

  20. Arnold JT, Lessey BA, Seppälä M, Kaufman DG. Effect of normal endometrial stroma on growth and differentiation in Ishikawa endometrial adenocarcinoma cells. Can Res. 2002;62:79–88.

    CAS  Google Scholar 

  21. Mescher AL. Junqueira’s basic histology: text and atlas, Sixteenth edition, 50th anniversary edition. New York: McGraw-Hill; 2021.

    Google Scholar 

  22. Kim SW, Ehrman J, Ahn MR, et al. Shear stress induces noncanonical autophagy in intestinal epithelial monolayers. Mol Biol Cell. 2017;28:3043–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lai SK, Wang Y-Y, Wirtz D, Hanes J. Micro-and macrorheology of mucus. Adv Drug Deliv Rev. 2009;61:86–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Van Wijk F, Van der Burg M, Burger CW, Vergote I, van Doorn HC. Management of recurrent endometrioid endometrial carcinoma: an overview. Int J Gynecol Cancer. 2009;19:314–20.

    Article  PubMed  Google Scholar 

  25. Nagase K, Akutagawa T, Rikitake-Yamamoto M, et al. Cellular and physical microenvironments regulate the aggressiveness and sunitinib chemosensitivity of clear cell renal cell carcinoma. J Pathol. 2021;254:46–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Aoki S, Toda S, Ando T, Sugihara H. Bone marrow stromal cells, preadipocytes, and dermal fibroblasts promote epidermal regeneration in their distinctive fashions. Mol Biol Cell. 2004;15:4647–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Aoki S, Makino J, Nagashima A, et al. Fluid flow stress affects peritoneal cell kinetics: possible pathogenesis of peritoneal fibrosis. Perit Dial Int. 2011;31:466–76.

    Article  CAS  PubMed  Google Scholar 

  28. Donohoe F, Wilkinson M, Baxter E, Brennan DJ. Mitogen-activated protein kinase (MAPK) and obesity-related cancer. Int J Mol Sci. 2020;21:1241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wilson J, Balkwill F. The role of cytokines in the epithelial cancer microenvironment. In: Seminars in cancer biology. Elsevier; 2002. p. 113–20.

    Google Scholar 

  30. Kawata K, Aoki S, Futamata M, et al. Mesenchymal cells and fluid flow stimulation synergistically regulate the kinetics of corneal epithelial cells at the air–liquid interface. Graefes Arch Clin Exp Ophthalmol. 2019;257:1915–24.

    Article  CAS  PubMed  Google Scholar 

  31. Makker A, Goel MM, Das V, Agarwal A. PI3K-Akt-mTOR and MAPK signaling pathways in polycystic ovarian syndrome, uterine leiomyomas and endometriosis: an update. Gynecol Endocrinol. 2012;28:175–81.

    Article  CAS  PubMed  Google Scholar 

  32. Chen J. Multiple signal pathways in obesity-associated cancer. Obes Rev. 2011;12:1063–70.

    Article  PubMed  Google Scholar 

  33. Liu F, Yang X, Geng M, Huang M. Targeting ERK, an Achilles’ Heel of the MAPK pathway, in cancer therapy. Acta Pharm Sin B. 2018;8:552–62.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Housman G, Byler S, Heerboth S, et al. Drug resistance in cancer: an overview. Cancers. 2014;6:1769–92.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Tsuruo T, Naito M, Tomida A, et al. Molecular targeting therapy of cancer: drug resistance, apoptosis and survival signal. Cancer Sci. 2003;94:15–21.

    Article  CAS  PubMed  Google Scholar 

  36. McCubrey JA, Steelman LS, Kempf CR, et al. Therapeutic resistance resulting from mutations in Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR signaling pathways. J Cell Physiol. 2011;226:2762–81.

    Article  CAS  PubMed  Google Scholar 

  37. Ramakrishnan VM, Boyd NL. The adipose stromal vascular fraction as a complex cellular source for tissue engineering applications. Tissue Eng Part B Rev. 2018;24:289–99.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wang T, Sharma AK, Wolfrum C. Novel insights into adipose tissue heterogeneity. Rev Endocr Metab Disord. 2022;23:5–12.

    Article  PubMed  Google Scholar 

  39. Lihn A, Pedersen SB, Richelsen B. Adiponectin: action, regulation and association to insulin sensitivity. Obes Rev. 2005;6:13–21.

    Article  CAS  PubMed  Google Scholar 

  40. Gregoire FM, Smas CM, Sul HS. Understanding adipocyte differentiation. Physiol Rev. 1998;78:783–809.

    Article  CAS  PubMed  Google Scholar 

  41. Aoki S, Toda S, Sakemi T, Sugihara H. Coculture of endothelial cells and mature adipocytes actively promotes immature preadipocyte development in vitro. Cell Struct Funct. 2003;28:55–60.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Nishimura, M. Nishida and S. Nakahara for excellent technical assistance.

Funding

This work was partially supported by grants from JSPS KAKENHI Grant Number 19K18468 (to MN) and 21K16773 (to MH).

Author information

Authors and Affiliations

Authors

Contributions

SM: Investigation, Writing—Original Draft. MK Investigation, Methodology. MN, TS, MH, TN: Investigation. AK: Statistical analysis. ST: Supervision. SA: Conceptualization, Methodology, Investigation, Writing—Reviewing and Editing, Project administration.

Corresponding author

Correspondence to Shigehisa Aoki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

All procedures involving human or animal materials were performed in accordance with the ethical guidelines of Saga University.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 23 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morito, S., Kawasaki, M., Nishiyama, M. et al. Microenvironmental elements singularity synergistically regulate the behavior and chemosensitivity of endometrioid carcinoma. Human Cell 36, 1147–1159 (2023). https://doi.org/10.1007/s13577-023-00886-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-023-00886-7

Keywords

Navigation