Log in

Map** novel sources of leaf rust and stripe rust resistance introgressed from Triticum dicoccoides in cultivated tetraploid wheat background

  • Original Article
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Wild emmer wheat, Triticum dicoccoides, the progenitor of modern tetraploid and hexaploid wheats, is an important resource for new variability for disease resistance genes. T. dicoccoides accession pau4656 showed resistance against prevailing leaf rust and stripe rust races in India and was used for develo** stable introgression lines (IL) in T. durum cv Bijaga yellow and named as IL pau16068. F5 Recombinant inbred lines (F5 RILs) were developed by crossing IL pau16068 with T. durum cultivar PBW114 and RIL population was screened against highly virulent Pt and Pst pathotypes at the seedling and adult plant stages. Inheritance analyses revealed that population segregated for two genes for all stage resistance (ASR) against leaf rust, one ASR gene against stripe rust and three adult plant resistance (APR) genes for stripe rust resistance. For map** these genes a set of 483 SSR marker was used for bulked segregant analysis. The markers showing diagnostic polymorphism in the resistant and susceptible bulks were amplified on all RILs. Single marker analysis placed all stage leaf rust resistance genes on chromosome 6A and 2A linked to the SSR markers Xwmc256 and Wpaus268, respectively. Likewise one all stage stripe rust resistance gene were mapped on long arm of chromosome 6A linked to markers 6AL-5833645 and 6AL-5824654 and two APR genes mapped on chromosomes 2A and 2B close to the SSR marker Wpaus268 and Xbarc70, respectively. The current study identified valuable leaf rust and stripe rust resistance genes effective against multiple rust races for deployment in the wheat breeding programme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

Pst :

Puccinia striiformis

Pt :

Puccinia triticina

SSR:

Simple sequence repeats

IL:

Introgression line

QTL:

Quantitative trait loci

RIL:

Recombinant inbred line

BSA:

Bulked segregant analysis

IT:

Infection type

ASR:

All stage resistance

APR:

Adult plant resistance

References

  • Bai B, Du JY, Lu QL, He CY, Zhang LJ, Zhou G, **a XC, He ZH, Wang CS (2014) Effective resistance to wheat stripe rust in a region with high disease pressure. Plant Dis 98(7):891–897

    Article  CAS  Google Scholar 

  • Bhardwaj SC, Singh GP, Gangwar OP, Prasad P, Kumar S (2019) Status of wheat rust research and progress in rust management-Indian context. Agronomy 9:892. https://doi.org/10.3390/agronomy9120892

    Article  CAS  Google Scholar 

  • Chen XM (2014) Stripe rust: the good, bad and ugly. Washington Grain Commission, Pullman, DC, pp 52–55

    Google Scholar 

  • Dadkhodaie NA, Karaoglou H, Wellings CR, Park RF (2011) Map** genes Lr53 and Yr35 on the short arm of chromosome 6B of common wheat with microsatellite markers and studies of their association with Lr36. Theor Appl Genet 122:479–487

    Article  CAS  Google Scholar 

  • Elkot AFA, Abd El-Aziz M, Aldrussi I, El-Maghraby M (2016) Molecular identification of some stem rust and yellow rust resistance genes in Egyptian wheat and some exotic genotypes. Assiut J Agric Sci 47:124–135

    Google Scholar 

  • Feldman M, Sears ER (1981) The wild gene resources of wheat. Sci Am 244:102–112

    Article  Google Scholar 

  • Feng J, Chen G, Wei Y, Liu Y, Jiang Q et al (2014) Identification and genetic map** of a recessive gene for resistance to stripe rust in wheat line LM168-1. Mol Breed 33:601–609

    Article  CAS  Google Scholar 

  • Fu DL, Uauy C, Distelfeld A, Blechl A, Epstein L et al (2009) A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science 323:1357–1360

    Article  CAS  Google Scholar 

  • Gerechter-Amitai ZK, Vansilfhout CH, Grama A, Kleitman F (1989) Yr15: a new gene for resistance to Puccinia striiformis in Triticum dicoccoides Sel. G-25. Euphytica 43:187–190

    Article  Google Scholar 

  • Hao Y, Chen Z, Wang Y, Bland D, Buck J et al (2011) Characterization of a major QTL for adult plant resistance to stripe rust in US soft red winter wheat. Theor Appl Genet 123:1401–1411

    Article  Google Scholar 

  • Huang L, Raats D, Sela H, Klymiuk V, Lidzbarsky G, Feng L, Krugman T, Fahima T (2016) Evolution and adaptation of wild emmer wheat populations to biotic and abiotic stresses. Annu Rev Phytopathol 54:279–301

    Article  CAS  Google Scholar 

  • Kaur P, **dal S, Yadav IS, Mahato A, Sharma P, Kaur S, Gupta OP, Vrána J, Šimková H, Doležel J, Gill BS, Meyer KFX, Khurana JP, Singh NK, Chhuneja P, Singh K (2020) Comparative analysis of chromosome 2A molecular organization in diploid and hexaploid wheat. Mol Bio Rep 47:1991–2003

    Article  CAS  Google Scholar 

  • Klymiuk V, Fatiukha A, Raats D, Bocharova V, Huang L, Feng L, Jaiwar S, Pozniak C, Coaker G, Dubcovsky G, Fahima T (2020) Three previously characterized resistances to yellow rust are encoded by a single locus Wtk1. J Exp Bot 71(9):2561–2572. https://doi.org/10.1093/jxb/eraa020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knott DR, Padidam M (1988) Inheritance of resistance to stem rust in six wheat lines having adult plant resistance. Genome 30:283–288. doi:https://doi.org/10.1139/g88-049

    Article  Google Scholar 

  • Kolmer J (2008) Lr63, Lr64. In: McIntosh RA, Dubcovsky J, Rogers WJ, Morris C, Appels R, **a XC (eds) Catalogue of gene symbols for wheat: 2009 supplement, p 271 (Reference10550, p 273). Ann Wheat Newsl 55:256–278

    Google Scholar 

  • Kolmer A, Bernardo A, Bai G, HaydenM Anderson JA (2019) Thatcher wheat line RL6149 carries Lr64 and a second leaf rust resistance gene on chromosome 1DS. Theor Appl Genet. https://doi.org/10.1007/s00122-019-03389-y

    Article  PubMed  Google Scholar 

  • Kumar S, Archak S, Tyagi RK, Kumar J, VK V, Jacob SR et al (2016) Evaluation of 19,460 wheat accessions conserved in the Indian national genebank to identify new sources of resistance to rust and spot blotch diseases. PLoS ONE 11:e0167702. https://doi.org/10.1371/journal.pone.0167702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lan C, Hale IL, Herrera-Foessel SA, Basnet BR, Randhawa MS, Huerta-Espino J, Dubcovsky J, Singh RP (2017) Characterization and map** of leaf rust and stripe rust resistance loci in hexaploid wheat lines UC1110 and PI610750 under Mexican environments. Front. Plant Sci 8:1450. doi:https://doi.org/10.3389/fpls.2017.01450

    Article  Google Scholar 

  • Lan C, Rosewarne GM, Singh RP, Herrera-Foessel SA, Huerta-Espino J et al (2014) QTL characterization of resistance to leaf rust and stripe rust in the spring wheat line Francolin#1. Mol Breed 34:789–803

    Article  CAS  Google Scholar 

  • Lillemo M, Asalf B, Singh RP, Huerta-Espino J, Chen XM et al (2008) The adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29 are important determinants of partial resistance to powdery mildew in bread wheat line Saar. Theor Appl Genet 116:1155–1166

    Article  CAS  Google Scholar 

  • Lin F, Chen XM (2009) Quantitative trait loci for non-race-specific, high-temperature adult-plant resistance to stripe rust in wheat cultivar Express. Theor Appl Genet 118:631–642

    Article  CAS  Google Scholar 

  • Lorieux M (2012) MapDisto: fast and efficient computation of genetic linkage maps. Mol Breed 30:1231–1235

    Article  CAS  Google Scholar 

  • Marais GF, Pretorius ZA, Wellings CR, McCallum B, Marais AS (2005) Leaf rust and stripe rust resistance genes transferred to common wheat from Triticum dicoccoides. Euphytica 143:115–123

    Article  CAS  Google Scholar 

  • McIntosh RA, Dubcovsky J, Rogers WJ, Morris C, **a XC (2017) Catalogue of gene symbols for wheat: 2017 supplement. https://shigen.nig.ac.jp/wheat/komugi/genes/macgene/supplement2017.pd

  • Murray M, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4326

    Article  CAS  Google Scholar 

  • Nevo E, Beiles A (1989) Genetic diversity of wild emmer wheat in Israel and Turkey: structure, evolution and application in breeding. Theor Appl Genet 77:421–455

    Article  CAS  Google Scholar 

  • Peng JH, Fahima T, Roder MS, Li YC, Grama A, Nevo E (2000) Microsatellite high-density map** of the stripe rust resistance gene YrH52 region on chromosome 1B and evaluation of its marker-assisted selection in the F2 generation in wild emmer wheat. New Phytol 146:141–154

    Article  CAS  Google Scholar 

  • Peng J, Sun D, Nevo E (2011) Wild emmer wheat, Triticum dicoccoides, occupies a pivotal position in wheat domestication process. AJCS 5:1127–1143

    Google Scholar 

  • Peng J, Sun D, Peng Y, Nevo E (2013) Gene discovery in Triticum dicoccoides, the direct progenitor of cultivated wheats. Cereal Res Commun 41(1):1–22

    Article  CAS  Google Scholar 

  • Peterson RF, Campbell AB, Hannah AE (1948) A diagnostic scale for estimating rust severity on leaves and stem of cereals. Can J Res Sect C Bot Sci 26:496–500

    Article  Google Scholar 

  • Prins R, Pretorius ZA, Bender CM, Lehmensiek A (2011) QTL map** of stripe, leaf and stem rust resistance genes in a Kariega × Avocet S doubled haploid wheat population. Mol Breed 27:259–270

    Article  Google Scholar 

  • Rosewarne GM, Singh RP, Huerta-Espino J, Herrera-Foessel SA, Forrest KL et al (2012) Analysis of leaf and stripe rust severities reveals pathotype changes and multiple minor QTLs associated with resistance in an Avocet × Pastor wheat population. Theor Appl Genet 124:1283–1294

    Article  CAS  Google Scholar 

  • Singh AK, Sharma JB, Vinod, Singh PK, Singh A, Mallick N (2017) Genetics and map** of a new leaf rust resistance gene in Triticum aestivum L. × Triticum timopheevii Zhuk. derivative ‘Selection G12’. J Genet 96:291–297

    Article  CAS  Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  CAS  Google Scholar 

  • Stakman EC, Stewart DM, Loeering WQ (1962) Identification of physiologic pathotypes of Puccinia graminis var. tritici. USDA Agric Res Ser Bull E 617(revised):53

    Google Scholar 

  • Sun GL, Fahima T, Korol AB, Turpeinen T, Grama A et al (1997) Identification of molecular markers linked to the Yr15 stripe rust resistance gene of wheat originated in wild emmerwheat, Triticum dicoccoides. Theor Appl Genet 95:622–628

    Article  CAS  Google Scholar 

  • Todorovska E, Christov N, Slavov S, Christova P, Vassilev D (2009) Biotic stress resistance in wheat—breeding and genomic selection implications. Biotechnol Biotechnol Equip 23:1417–1426. doi:https://doi.org/10.2478/V10133-009-0006-6

    Article  CAS  Google Scholar 

  • Tomar S, Singh SK, Sivasamy M, Vinod (2014) Wheat rusts in India: resistance breeding and gene deployment—a review. Indian J Genet Plant Breed 74:129–156

    Article  CAS  Google Scholar 

  • Uauy C, Brevis JC, Chen XM, Khan I, Jackson L et al (2005) High-temperature adult-plant (HTAP) stripe rust resistance gene Yr36 from Triticum turgidum ssp. dicoccoides is closely linked to the grain protein content locus Gpc-B1. Theor Appl Genet 112:97–105

    Article  CAS  Google Scholar 

  • Vazquez MD, Peterson CJ, Riera-Lizarazu O, Chen X, Heesacker A et al (2012) Genetic analysis of adult plant, quantitative resistance to stripe rust in wheat cultivar “Stephens” in multi-environment trials. Theor Appl Genet 124:1–11

    Article  CAS  Google Scholar 

  • William HM, Singh RP, Huerta-Espino J, Palacios G, Suenaga K (2006) Characterization of genetic loci conferring adult plant resistance to leaf rust and stripe rust in spring wheat. Genome 49:977–990

    Article  CAS  Google Scholar 

  • Zhang H, Zhang L, Wang C, Wang Y, Zhou X et al (2016) Molecular map** and marker development for the Triticum dicoccoides—derived stripe rust resistance gene YrSM139-1B in bread wheat cv. Shaanmai 139. Theor Appl Genet 129:369–376

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support provided by Department of Biotechnology. Ministry of Science and Technology, GOI is gratefully acknowledged. First authors acknowledge the support provided by The World Academy of Sciences and DBT in the form of TWAS_DBT Post-Doctoral Fellowship. The provision of rust cultures by the Directorate of Wheat Research Regional Research Station, Shimla is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

AFE—Phenoty** and genoty** of the population; RS—genoty** of the population; SK—material development and rust phenoty**; JK—screening against stripe rust races PC—study concept, material development and manuscript draft.

Corresponding author

Correspondence to Parveen Chhuneja.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

13562_2020_598_MOESM1_ESM.xlsx

Supplementary table 1: List of A and B chromosome specific SSR and KASP primers designed from wheat genome sequence. (XLSX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elkot, A.F., Singh, R., Kaur, S. et al. Map** novel sources of leaf rust and stripe rust resistance introgressed from Triticum dicoccoides in cultivated tetraploid wheat background. J. Plant Biochem. Biotechnol. 30, 336–342 (2021). https://doi.org/10.1007/s13562-020-00598-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13562-020-00598-1

Keywords

Navigation