Log in

A Paleosol Identified By Optically Stimulated Luminescence Dating in the Excavation of a Tank in Agreste of Pernambuco State, NE Brazil

  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

Sediments from a tank excavation in the municipality of Fazenda Nova, Pernambuco, were analyzed to determine the origin and dating of two calcrete levels found at the base and the top of the profile. The goal of the study was to generate a lithostratigraphic description and establish a timeline of these calcrete levels. The excavation consisted of a trench with dimensions of 1.5 m on each side and 1.65 m in depth, in which nine units (R1.1 to R1.9) were described from base to top. Fossil fragments were discovered at levels R1.2 and R1.6, which also showed higher calcium oxide (CaO) content, confirming their classification as calcrete levels. Four samples were collected for optically stimulated luminescence (OSL) testing. OSL analysis revealed that the oldest samples at the base of the profile were associated with time intervals between 45,058 ± 3,093 years (R1.2), corresponding to the conglomeratic calcrete level containing bone fragments from the mammalian megafauna. The sediments from the middle to the top of the profile (R1.4 = 7,078 ± 401; R1.6 = 4,194 ± 223; R1.7 = 3,823 ± 339) were found to be more recent, with age differences between the oldest and youngest samples ranging from 38,000 to 42,000 years. There was an additional calcrete level of granular specification from the middle to the top (R1.6). Both calcrete levels were confirmed to be of pedogenetic origin. The most basal level, being older than 11,000 years, predates the Holocene age and is hence classified as a paleosol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study. 

References

  1. O.B. Lian, R.G. Roberts, Quat. Sci. Rev. (2006). https://doi.org/10.1016/j.quascirev.2005.11.013

    Article  Google Scholar 

  2. G.A.T. Duller, J. Quat. Sci. (2004). https://doi.org/10.1002/jqs.809

    Article  Google Scholar 

  3. P. Mosca, Stud. Quat. (2019). https://doi.org/10.24425/sq.2019.126387

    Article  Google Scholar 

  4. F.W.J. Cruz, S.J. Burns, I. Karmann, W.D. Sharp, M. Vuille, J.A. Ferrari, A stalagmite record of changes in atmospheric circulation and soil processes in the Brazilian subTropics during the Late Pleistocene. Quat. Sci. Rev. 25, 2749–2761 (2006)

    Article  ADS  Google Scholar 

  5. L.C.R. Pessenda, S.E.M. Gouveira, A.S. Ribeiro, P.E. de Oliveira, R. Areavena, Palaeogeogr. Palaeoclimatol. Palaeoecol. (2010). https://doi.org/10.1016/j.palaeo.2010.09.008

    Article  Google Scholar 

  6. V.F. Novello, F.W. Cruz, M. Vuille, N.M. Stríkis, R.L. Edwards, H. Cheng, S. Emerick, M.S. de Paula, X. Li, E.S. Barreto, I. Karmann, R.V. Santos, Sci. Rep. (2017). https://doi.org/10.1038/srep44267

    Article  Google Scholar 

  7. G. Utida, F.W. Cruz, R.V. Santos, A.O. Sawakuchi, H. Wang, L.C.R. Pessenda, R.L. Edwards, Quat. Sci. Rev. (2020). https://doi.org/10.1016/j.quascirev.2020.1066

    Article  Google Scholar 

  8. M.F. Thomas, CATENA (2001). https://doi.org/10.1016/s0341-8162(00)00133-8

    Article  Google Scholar 

  9. M.F. Thomas, CATENA (2004). https://doi.org/10.1016/s0341-8162(03)00111-59

    Article  Google Scholar 

  10. D.N. Fonsêca, A.C.B. Corrêa, B.A.C. Tavares, D.B.R. de Lira, A.C.M. de Barros, A.C. Silva, D. Mützenberg, Earth Surf. Proc. Land. (2020). https://doi.org/10.1002/esp.4982

    Article  Google Scholar 

  11. G.J. Retallack, Core concepts of paleopedology. Quater. Inter. 51(52), 203–212 (1998)

    Article  Google Scholar 

  12. A. Murray, L. Arnold, J.P. Buylaert, G. Guerin, J. Qin, A. Singhvi, R. Smedley, K. Thomsen, Nat. Rev. Methods Primers (2021). https://doi.org/10.1038/s43586-021-00068-5

    Article  Google Scholar 

  13. S.A. Mahan, T.M. Rittenour, M.S. Nelson, N. Ataee, N. Brown, R. DeWitt, J. Durcan, M. Evans, J. Feathers, M. Frouin, G. Guérin, M. Heydari, S. Huot, M. Jain, A. Keen-Zebert, B. Li, G.I. López, C. Neudorf, N. Porat, K. Rodrigues, A.O. Sawakuchi, J.Q.G. Spencer, K. Thomsen, Guide For Interpreting and reporting luminescence dating results. GSA Bull. 135, 1480–1502 (2023)

    Google Scholar 

  14. J. Wallinga, J. Sevink, J.M. van Mourik, T. Reimann, Luminescence dating of soil archives, in Reading the Soil Archives. ed. by J.M. van Mourik, J.J.M. van der Meer (Elsevier, 2019), pp.115–162

    Chapter  Google Scholar 

  15. J.A. Durcan, Luminescence Dating. Encyclopedia of Geology (2021). https://doi.org/10.1016/b978-0-12-409548-9.12105-0

    Article  Google Scholar 

  16. J.K. Feathers, Meas. Sci. Technol. (2003). https://doi.org/10.1088/0957-0233/14/9/302

    Article  Google Scholar 

  17. R.R. Carvalho, V.K. Asfora, W.A. Lima de Moura, J.A. Barbosa, G.M. Silva Ramos, V.H.M.L. Neumann, J South Am Earth Sci (2024). https://doi.org/10.1016/j.jsames.2024.104798

    Article  Google Scholar 

  18. G. Hütt, I. Jaek, J. Tchonka, Optical dating: K-feldspars optical response stimulation spectra. Quat. Sci. Rev. 7, 381–385 (1988)

    Article  ADS  Google Scholar 

  19. progress in luminescence dating of sediments, O. B. L., Lian, R.G. Roberts, Dating the Quaternary. Quat. Sci. Rev. 25, 2499–2468 (2006)

    Google Scholar 

  20. G.A.T. Duller, Equivalent dose determination using single aliquots. International Journal of Radiation Applications and Instrumentation.  Int J Radiat Appl Inst Part D Nucl Track Radiat Meas 18, 371–378 (1991)

    Article  Google Scholar 

  21. M. Lamothe, S. Balescu, M. Auclair, Natural IRSL intensities and apparent luminescence ages of single feldspar grains extracted from partially bleached sediments Radiat. Meas. 23, 555–562 (1994)

    Article  Google Scholar 

  22. B. Li, R.G. Roberts, Z. Jacobs, Quat. Geochronol. (2013). https://doi.org/10.1016/j.quageo.2013.03.006

    Article  Google Scholar 

  23. B. Li, S. H. LI,. J. Phys. D: Appl. Phys. (2008). https://doi.org/10.1088/0022-3727/41/22/225502

  24. B. Li, S.H. Li, Luminescence dating of K-feldspar from sediments: A protocol without anomalous fading correction. Quat. Geochronol. 6, 468–479 (2011)

    Article  Google Scholar 

  25. A.C.B. Corrêa, B.A.C. Tavares, K.A. Monteiro, L.C.S. Cavalcanti, D.R. Lira, Megageomorfologia e Morfoestrutura do Planalto da Borborema. Rev. Inst. Geo. 31, 35–52 (2010)

    Article  Google Scholar 

  26. H.G.S. Santos, P.K. Jacomine, L.H.C. Anjos, V.A. Oliveira, J.F. Lumbreras, M. R. Coelho, J.A. Almeida, J.C. Araújo Filho, J.B. Oliveira, T.J.F. Cunha, Sistema brasileiro de classificação de solos, 5nd edn. (Embrapa, Brasília) 356 (2018)

  27. F.F.M. Almeida, Y. Hasui, O Pré-Cambriano do Brasil (São Paulo, Edgard Blucher, 1984), p.378

    Google Scholar 

  28. G. Mariano, J. M. R Silva, P.B. Correia, S.P. Neves, A.F. Cabral, F.M.V. Silva, I.T. Chagas, T.S. Miranda, S.F.Oliveira, B.S. Freire, Nota Explicativa da Folha Belo Jardim (SC.24-X-B-III) 1:100.000 ( CPRM, Brasil) 80 (2008)

  29. E.J. Santos, O complexo granítico de Lagoa das Pedras: acresção e colisão na região de Floresta (PE), Província Borborema. [Doctoral Thesis]. São Paulo: Instituto de Geociências, Universidade de São Paulo – USP, 220 (1995). https://doi.org/10.11606/T.44.1995.tde-28102015-094036

  30. E.J. Santos, V.C. Medeiros, Constraints from granitic plutonism on proterozoic crustal growth of the transverse zone, Borborema Province. NE Brazil. Rev. Bras. Geoc. 29, 73–84 (1999)

    Article  Google Scholar 

  31. S.P. Neves, A.M.B. Araújo, P.B. Correia, G. Mariano, J. Struct. Geol. (2003). https://doi.org/10.1016/S0191-8141(02)00003-2

    Article  Google Scholar 

  32. S.P. Neves, S.C. Melo, C.A.V. Moura, G. Mariano, J.M. Rangel Da Silva, Int. Geol. Rev. (2004). https://doi.org/10.2747/0020-6814.46.1.52

    Article  Google Scholar 

  33. S.P. Neves, O. Bruguier, A. Vauchez, D. Bosch, J.M.R. Silva, G. Mariano, Precambrian Res. (2006). https://doi.org/10.1016/j.precamres.2006.06.005

    Article  Google Scholar 

  34. S.P. Neves, G. Mariano, J. Struct. Geol. (1999). https://doi.org/10.1016/S0191-8141(99)00097-8

    Article  Google Scholar 

  35. S.P. Neves, A. Vauchez, G. Feraud, Precambrian Res. (2000). https://doi.org/10.1016/S0301-9268(99)00026-1

    Article  Google Scholar 

  36. G.A.T. Duller, Radiat. Meas. (2003). https://doi.org/10.1016/S1350-4487(02)00170-1

    Article  Google Scholar 

  37. A.S. Murray, A.G. Wintle, Radiat. Meas. (2000). https://doi.org/10.1016/S1350-4487(99)00253-X

    Article  Google Scholar 

  38. A.S. Murray, A.G. Wintle, Radiat. Meas. (2006). https://doi.org/10.1016/j.radmeas.2005.11.001

    Article  Google Scholar 

  39. K.J. Thomsen, A.S. Murray, M. Jain, L. Bøtter-Jensen, Radiat. Meas. (2008). https://doi.org/10.1016/j.radmeas.2008.06.002

    Article  Google Scholar 

  40. P. Morthekai, M. Jain, A.S. Murray, A.S. Thomsen, L. Bøtter-Jensen, Radiat. Meas. (2008). https://doi.org/10.1016/j.radmeas.2008.02.019

    Article  Google Scholar 

  41. J.P. Buylaert, A.S. Murray, K.J. Thomsen, M. Jain, Radiat. Meas. (2009). https://doi.org/10.1016/j.radmeas.2009.02.007

    Article  Google Scholar 

  42. M. Jain, C. Ankjaergaard, Radiat. Meas. (2011). https://doi.org/10.1016/j.radmeas.2010.12.004

    Article  Google Scholar 

  43. R.F. Galbraith, R.G. Roberts, G.M. Laslett, H. Yoshida, J.M. Olley, Optical dating of single and multiple grains of quartz from **mium rock shelter, northern Australia. Part I, experimental design and statistical models. Archaeometry 41, 339–364 (1999)

    Article  Google Scholar 

  44. M.J. Aitken, Thermoluminescence dating (Academic Press, London, 1985), p.351

    Google Scholar 

  45. W. Weida, Sci. China Technol. Sci. (2008). https://doi.org/10.1007/s11431-008-0022-z

    Article  Google Scholar 

  46. D.J. Huntley, M.R. Baril, The K content of the K- feldspars being measured in optical dating or in thermoluminescence dating. Ancient TL. 19, 43–46 (1997)

    Google Scholar 

  47. D.J. Huntley, R.G.V. Hancock, The Rb contents of the K- feldspars being measured in optical dating. Ancient TL. 19, 43–46 (2001)

    Google Scholar 

  48. H. Zhao, S.H. Li, Internal dose rate to K-feldspar grains from radioactive elements other than potassium. Radiat. Meas. (2005). https://doi.org/10.1016/j.radmeas.2004.11.004

    Article  Google Scholar 

  49. B. Li, S.H. Li, J. Phys. D Appl. Phys. (2008). https://doi.org/10.1088/0022-3727/41/22/225502

    Article  Google Scholar 

  50. A.M. Alonso-Zarza, Earth Sci. Rev. (2003). https://doi.org/10.1016/S0012-8252(02)00106-X

    Article  Google Scholar 

  51. E. Maoski, Gênese dos calcretes da Formação Marília no Centro-Oeste Paulista e Triângulo Mineiro, Bacia Bauru. [Master's Dissertation] Curitiba: Setor de Ciências da Terra, Universidade Federal do Paraná - UFPR, p. 94 (2012). https://acervodigital.ufpr.br/handle/1884/27326

  52. P.B. Adler, L.F. De Ros, K.L. Mansur, A.L. Ferrari, Thjbdva asvafnugav. Pesq. Geoc. (2017). https://doi.org/10.22456/1807-9806.78274

    Article  Google Scholar 

  53. K. Suguio, Geologia do Quaternário e mudanças ambientais. Passado + Presente = Futuro (São Paulo, Paulo’s Editora, 1999), p.366

    Google Scholar 

  54. G.J. Retallack, Soils of the past: an introduction to paleopedology (Blackwell Science, Oxford, 2001), p.404

    Book  Google Scholar 

  55. A.T. Guerra, A.J.T. Guerra, Novo Dicionário Geológico-Geomorfológico, 3ed (Bertrand. Brasil, Rio de Janeiro, 2003), p.652

    Google Scholar 

  56. F. Press, J. Grotzinger, T.H. Jordan, Para Entender a Terra (Bookman, Porto Alegre, 2006), p.656

    Google Scholar 

  57. R.S. Alves, Os mamíferos de fazenda Nova, Brejo da Madre de Deus, Pernambuco: aspectos tafonômicos, taxonômicos e paleoambientais. [Master's dissertation] Recife: Programa de Pós-Graduação em Geociências, Universidade Federal de Pernambuco – UFPE 127 (2007). https://repositorio.ufpe.br/handle/123456789/6492

  58. D.G.S. Listo, R.F.T.M. Balder, A.C.B. Corrêa, D.A.M.C. Ramos, M.R. Calegari, Quat. Int. (2023). https://doi.org/10.1016/j.quaint.2022.10.004

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

R. R. da Silva, G. L. Fambrini, E. V. Oliveira, J. L. L. da Silva, A. de S. Moraes, M. M. Corrêa, Y. J. A. B. da Silva, J. A. de S. Neto: Conducting a research and investigation process, specifically performing the experiments, or data/evidence collection V. K. Asfora: Management and coordination responsibility for the research activity planning and execution V. H. de M. L. Neumann: Conceptualization, Methodology, Writing - Review & Editing, Funding acquisition, Project administration, Supervision. All authors reviewed the manuscript.

Corresponding author

Correspondence to Viviane Khoury Asfora.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranulpho, R., Asfora, V.K., Fambrini, G.L. et al. A Paleosol Identified By Optically Stimulated Luminescence Dating in the Excavation of a Tank in Agreste of Pernambuco State, NE Brazil. Braz J Phys 54, 143 (2024). https://doi.org/10.1007/s13538-024-01510-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-024-01510-1

Keywords

Navigation