Log in

Effects of Electric Current on the Structural and Optical Properties of TiO2 Films

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

TiO2 thin films were deposited on glass substrates through magnetron sputtering using a Ti target and an Ar-O2 gas mixture, with different electrical currents ranging from 0.2 to 0.6 A. The impact of varying the current on the structure and properties of the TiO2 films was investigated in a systematic manner through techniques such as X-ray diffraction (XRD), scanning electron microscopy with field emission gun (SEM-FEG), Raman spectroscopy, and visible ultraviolet spectroscopy (UV/Vis). The XRD results indicated the presence of both anatase and rutile phases, with the intensities of these phases increasing as the electrical current increased. Furthermore, the crystallinity, particle size, transmittance, and interference fringes were observed to increase as the electrical current was raised.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Tanemura, L. Miao, W. Wunderlich, M. Tanemura, Y. Mori, S. Toh, K. Kaneko, Sci. Technol. Adv. Mater. 6, 11 (2005)

    Google Scholar 

  2. E. G-Berasategui, C. Zubizarreta, L. Mendizabal, J. Barriga, A. Viñuales, J. Palenzuela, Y. Alesanco, B. Herbig, U. Posset, Vacuum 151, 108 (2018)

  3. N.A. Kalanda, G.G. Gorokh, M.V. Yarmolich, A.A. Lozovenko, EYu. Kanyukov, Phys. Solid State 58, 351 (2016)

    ADS  Google Scholar 

  4. S. Varnagiris, M. Urbonavicius, S. Tuckute, M. Lelis, D. Milcius, Vacuum 143, 28 (2017)

    ADS  Google Scholar 

  5. P. Lv, H. Sun, H. Yang, W. Fu, B. Cao, Y. Liu, C. Wang, Y. Mu, Vacuum 161, 21 (2019)

    ADS  Google Scholar 

  6. P. Yilmaz, A.M. Lacerda, I. Larrosa, S. Dunn, Electrochim. Acta 231, 641 (2017)

    Google Scholar 

  7. Y. Cui, X. He, M. Zhu, X. Li, J. Alloy. Compd. 694, 568 (2017)

    Google Scholar 

  8. C. Chen, F. Luo, Y. Li, G.A. Sewvandi, Q. Feng, Mater. Lett. 196, 50 (2017)

    Google Scholar 

  9. K. Hantanasirisakul, M.-Q. Zhao, P. Urbankowski, J. Halim, B. Anasori, S. Kota, C.E. Ren, M.W. Barsoum, Y. Gogotsi, Adv. Electron. Mater. 2, 1600050 (2016)

    Google Scholar 

  10. W. Zhang, S. Pathak, N. Sakai, T. Stergiopoulos, P.K. Nayak, N.K. Noel, A.A. Haghighirad, V.M. Burlakov, D.W. deQuilettes, A. Sadhanala, W. Li, L. Wang, D.S. Ginger, R.H. Friend, H.J. Snaith, Nature Comm. 6, 10030 (2015)

  11. E. Greul, M.L. Petrus, A. Binek, P. Docampo, T. Bein, J. Mater. Chem. A 5, 19972 (2017)

    Google Scholar 

  12. X. Wei, H. Hui, C. Zhao, C. Deng, M. Han, Z. Yu, A. Sheng, P. Roy, A. Chen, J. Lin, D.F. Watson, Y.-Y. Sun, T. Thomay, S. Yang, Q. Jia, S. Zhang, H. Zeng, Nano Energy 68, 104317 (2020)

    Google Scholar 

  13. S.V. Trukhanov, A.V. Trukhanov, M.M. Salem, E.L. Trukhanova, L.V. Panina, V.G. Kostishyn, M.A. Darwish, An. V. Trukhanov, T.I. Zubar, D.I. Tishkevich, V. Sivakov, D.A. Vinnik, S.A. Gudkova, C. Singh, Ceram. Int. 44, 21295 (2018)

  14. D.I. Tishkevich, S.S. Grabchikov, S.B. Lastovskii, S.V. Trukhanov, T.I. Zubar, D.S. Vasin, A.V. Trukhanov, J. Alloy. Compd. 749, 1036 (2018)

    Google Scholar 

  15. J. Yu, X. Zhao, Q. Zhao, Thin Solid Films 379, 7 (2000)

    ADS  Google Scholar 

  16. C.W. Dunnill, I.P. Parkin, Dalton Trans. 40, 1635 (2011)

    Google Scholar 

  17. J. Li, D. Ren, Z. Wu, J. Xu, Y. Bao, S. He, Y. Chen, J. Colloid Interface Sci. 530, 78 (2018)

    ADS  Google Scholar 

  18. A. Eshaghi, H. Moradi, Adv. Powder Technol. 29, 1879 (2018)

    Google Scholar 

  19. S.M.H. AL-Jawad, A.A. Taha, M.M. Salim, Optik 142, 42 (2017)

  20. S. Kanan, M.A. Moyet, R.B. Arthur, H.H. Patterson, Catal. Rev. 62, 1 (2020)

    Google Scholar 

  21. A. Wiatrowski, M. Mazur, A. Obstarczyk, D. Wojcieszak, D. Kaczmarek, J. Morgiel, D. Gibson, Coatings 8, 412 (2018)

    Google Scholar 

  22. M. Vishwas, K.N. Rao, D.N. Priya, A.M. Raichur, R.P.S. Chakradhar, K. Venkateswarlu, Proc. Mater. Sci. 5, 847 (2014)

    Google Scholar 

  23. A.S. AlShammari, M.M. Halim, F.K. Yam, N.H.M. Kaus, Mater. Sci. Semicond. Process. 116, 105140 (2020)

    Google Scholar 

  24. S. Ruzgar, S.A. Pehlivanoglu, Superlattices Microstruct. 145, 106636 (2020)

    Google Scholar 

  25. H.S. Kang, B.D. Ahn, J.H. Kim, G.H. Kim, S.H. Lim, H.W. Chang, S.Y. Lee, Appl. Phys. Lett. 88, 202108 (2006)

    ADS  Google Scholar 

  26. J. Yu, M. Zhou, H. Yu, Q. Zhang, Y. Yu, Mater. Chem. Phys. 95, 193 (2006)

    Google Scholar 

  27. A A. Ahmad, Q.M. Al-Bataineh, A.M. Alsaad, T.O. Samara, K.A. Al-izzy, PhysB Condense. Matter 412263 (2020)

  28. S. Karuppuchamy, J.-M. Jeong, D.P. Amalnerkar, H. Minoura, Vacuum 80, 494 (2006)

    ADS  Google Scholar 

  29. Y.C. Lee, Y.P. Hong, H.Y. Lee, H. Kim, Y.J. Jung, K.H. Ko, H.S. Jung, K.S. Hong, J. Colloid Interface Sci. 267, 127 (2003)

    ADS  Google Scholar 

  30. H.-Y. Liu, Y.-L. Hsu, H.-Y. Su, R.-C. Huang, F.-Y. Hou, G.-C. Tu, W.-H. Liu, IEEE Sens. J. 18, 4022 (2018)

    ADS  Google Scholar 

  31. M.K. Patil, S. Shaikh, I. Ganesh, Curr. Nanosci. 11, 271 (2015)

    ADS  Google Scholar 

  32. A.O.T. Patrocinio, L.F. Paula, R.M. Paniago, J. Freitag, D.W. Bahnemann, A.C.S. Appl, Mater. Interfaces 6, 16859 (2014)

    Google Scholar 

  33. F. Sayılkan, M. Asiltürk, N. Kiraz, E. Burunkaya, E. Arpaç, H. Sayılkan, J. Hazard. Mater. 162, 1309 (2009)

    Google Scholar 

  34. X. Hou, H. Ma, F. Liu, J. Deng, Y. Ai, X. Zhao, D. Mao, D. Li, B. Liao, J. Hazard. Mater. 299, 59 (2015)

    Google Scholar 

  35. S. Cao, B. Liu, L. Fan, Z. Yue, B. Liu, B. Cao, Appl. Surf. Sci. 309, 119 (2014)

    ADS  Google Scholar 

  36. J. Yu, J. **ong, B. Cheng, S. Liu, Appl. Catal. B 60, 211 (2005)

    Google Scholar 

  37. S. Ko, C.K. Banerjee, J. Sankar, Compos. B Eng. 42, 579 (2011)

    Google Scholar 

  38. H.-L. Yu, Q.-X. Wu, J. Wang, L.-Q. Liu, B. Zheng, C. Zhang, Y.-G. Shen, C.-L. Huang, B. Zhou, J.-R. Jia, Appl. Surf. Sci. 503, 144075 (2020)

    Google Scholar 

  39. D.M. Chun, M.H. Kim, J.C. Lee, S.H. Ahn, CIRP Ann. 57, 551 (2008)

    Google Scholar 

  40. Y.-H. Wang, K.H. Rahman, C.-C. Wu, K.-C. Chen, Catalysts 10, 598 (2020)

    Google Scholar 

  41. A. Vahl, S. Veziroglu, B. Henkel, T. Strunskus, O. Polonskyi, O.C. Aktas, F. Faupel, Materials 12, 2840 (2019)

    ADS  Google Scholar 

  42. S. Kang, R. Mauchauffé, Y.S. You, S.Y. Moon, Sci. Rep. 8, 16684 (2018)

    ADS  Google Scholar 

  43. K. Baba, S. Bulou, M. Quesada-Gonzalez, S. Bonot, D. Collard, N.D. Boscher, P. Choquet, A.C.S. Appl, Mater. Interfaces 9, 41200 (2017)

    Google Scholar 

  44. M. Zhou, S. Roualdès, A. Ayral, Eur. Phys. J. Spec. Top. 224, 1871 (2015)

    Google Scholar 

  45. A. Perraudeau, C. Dublanche-Tixier, P. Tristant, C. Chazelas, Appl. Surf. Sci. 493, 703 (2019)

    ADS  Google Scholar 

  46. W.G. Lee, S.I. Woo, J.C. Kim, S.H. Choi, K.H. Oh, Thin Solid Films 237, 105 (1994)

    ADS  Google Scholar 

  47. D. Li, A. Goullet, M. Carette, A. Granier, Y. Zhang, J.P. Landesman, Vacuum 131, 231 (2016)

    ADS  Google Scholar 

  48. H.N.T. Phung, N.D. Truong, P.A. Duong, L.V. Tuan Hung, Curr. Appl. Phys. 18, 737 (2018)

  49. A.S. Bakri, M.Z. Sahdan, F. Adriyanto, N.A. Raship, N.D.M. Said, S.A. Abdullah, M.S. Rahim, AIP Conf. Proc. 1788, 030030 (2017)

    Google Scholar 

  50. L. Tian, L. Li, M. Wu, Micro & Nano Letters 12, 849 (2017)

    Google Scholar 

  51. I.I. Kabir, L.R. Sheppard, R. Liu, Y. Yao, Q. Zhu, W.-F. Chen, P. Koshy, C.C. Sorrell, Surf. Coat. Technol. 354, 369 (2018)

    Google Scholar 

  52. X. Zhu, P. Gu, H. Wu, D. Yang, H. Sun, P. Wangyang, J. Li, H. Tian, AIP Adv. 7, 125326 (2017)

    ADS  Google Scholar 

  53. S. Peng, Y. Yang, G. Li, J. Jiang, K. **, T. Yao, K. Zhang, X. Cao, Y. Wang, G. Xu, J. Alloy. Compd. 678, 355 (2016)

    Google Scholar 

  54. M.S. Libório, G.B. Praxedes, L.L.F. Lima, I.G. Nascimento, R.R.M. Sousa, M. Naeem, T.H. Costa, S.M. Alves, J. Iqbal, Surf. Coat. Technol. 384, 125327 (2020)

    Google Scholar 

  55. A. Monemdjou, F.E. Ghodsi, J. Mazloom, Superlattices Microstruct. 74, 19 (2014)

    ADS  Google Scholar 

  56. U. Kaltsum, A.F. Kurniawan, I. Nurhasanah, P. Priyono, Bulletin of Chemical Reaction Engineering & Catalysis 12, 430 (2017)

    Google Scholar 

  57. N. Duan, H. Lin, L. Li, J. Hu, L. Bi, H. Lu, X. Weng, J. **e, L. Deng, Opt. Mater. Exp. OME 3, 1537 (2013)

  58. S. Sério, M.E. Melo Jorge, M.J.P. Maneira, Y. Nunes, Mater. Chem. Phys. 126, 73 (2011)

  59. K. Manwani, E. Panda, Mater. Sci. Semicond. Process. 134, 106048 (2021)

    Google Scholar 

  60. D. Byun, Y. **, B. Kim, J. Kee Lee, D. Park, J. Hazard. Mater. 73, 199 (2000)

  61. C.V. Paz, F. Ung, J. Zárate, J.A. Cortés, Appl. Surf. Sci. 508, 145114 (2020)

    Google Scholar 

  62. S.A. Abdullah, M.Z. Sahdan, N. Nafarizal, H. Saim, A.S. Bakri, C.H.C. Rohaida, F. Adriyanto, Y. Sari, J. Phys.: Conf. Ser. 995, 012067 (2018)

    Google Scholar 

  63. L. Lopez, W.A. Daoud, D. Dutta, B.C. Panther, T.W. Turney, Appl. Surf. Sci. 265, 162 (2013)

    ADS  Google Scholar 

  64. B. Wang, S. Wei, L. Guo, Y. Wang, Y. Liang, B. Xu, F. Pan, A. Tang, X. Chen, Ceram. Int. 43, 10991 (2017)

    Google Scholar 

  65. A.S. Vorokh, Nanosystems Phys. Chem. Math. 364 (2018)

  66. V. Uvarov, I. Popov, Mater. Charact. 85, 111 (2013)

    Google Scholar 

  67. V. Uvarov, I. Popov, Mater. Charact. 58, 883 (2007)

    Google Scholar 

  68. P.B. Hirsch, Phys. Bull. 8, 237 (1957)

    Google Scholar 

  69. V. Swamy, B.C. Muddle, Q. Dai, Appl. Phys. Lett. 89, 163118 (2006)

    ADS  Google Scholar 

  70. F.D. Hardcastle, H. Ishihara, R. Sharma, A.S. Biris, J. Mater. Chem. 21, 6337 (2011)

    Google Scholar 

  71. M. Sittishoktram, S. Soontaranon, W. Jevasuwan, N. Fukata, P. Asanithi, T. Jutarosaga, Mater. Chem. Phys. 272, 124859 (2021)

    Google Scholar 

  72. B. Liu, Q.H.L. Wen, X. Zhao, Thin Solid Films 517, 6569 (2009)

    ADS  Google Scholar 

  73. T.N. Nguyen, V.D. Nguyen, S. Jung, J. Yi, Appl. Surf. Sci. 255, 8252 (2009)

    ADS  Google Scholar 

  74. A.K. Srivastava, M. Deepa, S. Bhandari, H. Fuess, Nanoscale Res Lett 4, 54 (2009)

    ADS  Google Scholar 

  75. M. Mazur, Opt. Mater. 69, 96 (2017)

    ADS  Google Scholar 

  76. M. Kang, S.W. Kim, H.Y. Park, J. Phys. Chem. Solids 123, 266 (2018)

    ADS  Google Scholar 

  77. Y. Toyozawa, J. Lumin. 12–13, 13 (1976)

    Google Scholar 

  78. M. Schreiber, Y. Toyozawa, J. Phys. Soc. Jpn. 51, 1528 (1982)

    ADS  Google Scholar 

  79. D. Pan, Q. Wang, S. Jiang, X. Ji, L. An, Adv. Mater. 17, 176 (2005)

    Google Scholar 

  80. L. Meng, T. Ren, C. Li, Appl. Surf. Sci. 256, 3676 (2010)

    ADS  Google Scholar 

  81. D. Samélor, A. Turgambaeva, V. Krisyuk, A. Miquelot, J. Cure, S. Sysoev, S. Trubin, P. Stabnikov, J. Esvan, V. Constandoudis, C. Vahlas, CrystEngComm 23, 3681 (2021)

    Google Scholar 

  82. P.-Y. Lee, E. Widyastuti, T.-C. Lin, C.-T. Chiu, F.-Y. Xu, Y.-T. Tseng, Y.-C. Lee, Coatings 11, 808 (2021)

    Google Scholar 

  83. O. Durante, C. Di Giorgio, V. Granata, J. Neilson, R. Fittipaldi, A. Vecchione, G. Carapella, F. Chiadini, R. DeSalvo, F. Dinelli, V. Fiumara, V. Pierro, I.M. Pinto, M. Principe, F. Bobba, Nanomaterials 11, 1409 (2021)

    Google Scholar 

  84. K. Kighuta, A.-I. Gopalan, D.-E. Lee, G. Saianand, Y.-L. Hou, S.-S. Park, K.-P. Lee, J.-C. Lee, W.-J. Kim, J. Environ. Chem. Eng. 9, 106417 (2021)

    Google Scholar 

  85. J. Tauc, R. Grigorovici, A. Vancu, Physica Status Solidi (b) 15, 627 (1966)

    ADS  Google Scholar 

  86. O. Agirseven, D.T. Rivella, J.E.S. Haggerty, P.O. Berry, K. Diffendaffer, A. Patterson, J. Kreb, J.S. Mangum, B.P. Gorman, J.D. Perkins, B.R. Chen, L.T. Schelhas, J. Tate, AIP Adv. 10, 025109 (2020)

    ADS  Google Scholar 

  87. H. Zhu, H. Wang, W. Wan, S. Yu, X. Feng, Thin Solid Films 566, 32 (2014)

    ADS  Google Scholar 

  88. M.N. Islam, J. Podder, Mater. Sci. Semicond. Process. 121, 105419 (2021)

    Google Scholar 

  89. M.C. Rao, K. Ravindranadh, M.S. Shekhawat, AIP Conf. Proc. 1728, 020077 (2016)

    Google Scholar 

  90. K. Möls, L. Aarik, H. Mändar, A. Kasikov, A. Niilisk, R. Rammula, J. Aarik, Opt. Mater. 96, 109335 (2019)

    Google Scholar 

Download references

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxwell Santana Libório.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Costa Santos, E.J., de Queiroz, J.C.A., Libório, M.S. et al. Effects of Electric Current on the Structural and Optical Properties of TiO2 Films. Braz J Phys 53, 138 (2023). https://doi.org/10.1007/s13538-023-01352-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-023-01352-3

Keywords

Navigation