Log in

WISP1 is increased in the maternal serum, adipose tissue, and placenta of women with gestational diabetes mellitus

  • Original Article
  • Published:
International Journal of Diabetes in Develo** Countries Aims and scope Submit manuscript

Abstract

Objective

This study aimed to investigate the concentration of Wingless-type (Wnt)-inducible signaling pathway protein-1 (WISP1) in the serum, and its expression in the abdominal subcutaneous adipose tissue (SAT), and placenta of women with gestational diabetes mellitus (GDM).

Methods

A total of 69 patients with GDM and 71 pregnant women with normal glucose tolerance (NGT, control) were recruited. Carbohydrate metabolism, alanine aminotransferase (ALT), lipid profiles, thyroid function, interleukin-6 (IL-6), and WISP1 levels were assessed. Fasting sera were collected between 25 and 30 weeks of gestation. Tissues of placenta and abdominal SAT samples were obtained from 24 women who had undergone cesarean section and were divided into a GDM group and a control group. Reverse transcription polymerase chain reaction (RT-PCR) and western blot were used to detect the WISP1 expression.

Results

The serum WISP1 concentrations were higher in the GDM group than in the control group (p < 0.01) and positively associated with body mass index (BMI), fasting glucose, fasting insulin, HOMA-insulin resistance (HOMA-IR), and IL-6 levels. BMI, fasting glucose, and HOMA-IR independently and positively predicted WISP1 levels. Further, WISP1 mRNA and protein expression were higher in tissues from the placenta and abdominal SAT from the GDM group (p < 0.01).

Conclusions

WISP1 may be an important adipokine in modulating carbohydrate metabolism in women with GDM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the present study are available from the corresponding author on reasonable request.

References

  1. Association AD. Classification and diagnosis of diabetes. Diabetes Care. 2016;39(Suppl 1):S13-22.

    Article  Google Scholar 

  2. Poulakos P, Mintziori G, Tsirou E, Taousani E, Savvaki D, Harizopoulou V, et al. Comments on gestational diabetes mellitus: from pathophysiology to clinical practice. Hormones (Athens, Greece). 2015;14(3):335–44.

    Google Scholar 

  3. Sook LW, Sablihan NI, Ismail S, Devaraj NK, Mooi CS. Factors associated with the level of physical activities among non-academic staffs in the faculty of medicine and health sciences of a public university in Selangor. Malaysia Mal J Med Health Sci. 2019;15(2):47–55.

    Google Scholar 

  4. Lee KW, Ching SM, Hoo FK, Ramachandran V, Chong SC, Tusimin M, et al. Neonatal outcomes and its association among gestational diabetes mellitus with and without depression, anxiety and stress symptoms in Malaysia: a cross-sectional study. Midwifery. 2020;81:102586.

    Article  Google Scholar 

  5. Devaraj NK, Mohamed M, Hussein N. Prevalence, factors influencing and knowledge about adherence to lipid-lowering therapy among hyperlipidemia patients. Med J Malaysia. 2017;72(3):157–64.

    CAS  PubMed  Google Scholar 

  6. Kintiraki E, Goulis DG, Mameletzi S, Kasmas S, Athanasiadis A, Assimakopoulos E, et al. Large- and small-for-gestational-age neonates born by women with gestational diabetes mellitus diagnosed by the new IADPSG criteria: a case-control study of 289 patients and 1108 controls. Exp Clin Endocrinol Diabetes. 2013;121(5):262–5.

    Article  CAS  Google Scholar 

  7. Stuebe AM, Landon MB, Lai Y, Spong CY, Carpenter MW, Ramin SM, et al. Maternal BMI, glucose tolerance, and adverse pregnancy outcomes. Am J Obstet Gynecol. 2012;207(1):62.e1-7.

    Article  Google Scholar 

  8. Tsiotra PC, Halvatsiotis P, Patsouras K, Maratou E, Salamalekis G, Raptis SA, et al. Circulating adipokines and mRNA expression in adipose tissue and the placenta in women with gestational diabetes mellitus. Peptides. 2018;101:157–66.

    Article  CAS  Google Scholar 

  9. Ben-Haroush A, Yogev Y, Hod M. Epidemiology of gestational diabetes mellitus and its association with type 2 diabetes. Diabet Med. 2004;21(2):103–13.

    Article  CAS  Google Scholar 

  10. Ouchi N, Parker JL, Lugus JJ, Walsh K. Adipokines in inflammation and metabolic disease. Nat Rev Immunol. 2011;11(2):85–97.

    Article  CAS  Google Scholar 

  11. Jung UJ, Choi MS. Obesity and its metabolic complications: the role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int J Mol Sci. 2014;15(4):6184–223.

    Article  Google Scholar 

  12. Hauguel-de Mouzon S, Guerre-Millo M. The placenta cytokine network and inflammatory signals. Placenta. 2006;27(8):794–8.

    Article  CAS  Google Scholar 

  13. Aye IL, Lager S, Ramirez VI, Gaccioli F, Dudley DJ, Jansson T, et al. Increasing maternal body mass index is associated with systemic inflammation in the mother and the activation of distinct placental inflammatory pathways. Biol Reprod. 2014;90(6):129.

    Article  Google Scholar 

  14. Kleiblova P, Dostalova I, Bartlova M, Lacinova Z, Ticha I, Krejci V, et al. Expression of adipokines and estrogen receptors in adipose tissue and placenta of patients with gestational diabetes mellitus. Mol Cell Endocrinol. 2010;314(1):150–6.

    Article  CAS  Google Scholar 

  15. Jansson N, Rosario FJ, Gaccioli F, Lager S, Jones HN, Roos S, et al. Activation of placental mTOR signaling and amino acid transporters in obese women giving birth to large babies. J Clin Endocrinol Metab. 2013;98(1):105–13.

    Article  CAS  Google Scholar 

  16. Murahovschi V, Pivovarova O, Ilkavets I, Dmitrieva RM, Docke S, Keyhani-Nejad F, et al. WISP1 is a novel adipokine linked to inflammation in obesity. Diabetes. 2015;64(3):856–66.

    Article  CAS  Google Scholar 

  17. Barchetta I, Cimini FA, Capoccia D, De Gioannis R, Porzia A, Mainiero F, et al. WISP1 is a marker of systemic and adipose tissue inflammation in dysmetabolic subjects with or without type 2 diabetes. J Endocr Soc. 2017;1(6):660–70.

    Article  CAS  Google Scholar 

  18. Wang AR, Yan XQ, Zhang C, Du CQ, Long WJ, Zhan D, et al. Characterization of Wnt1-inducible signaling pathway protein-1 in obese children and adolescents. Curr Med Sci. 2018;38(5):868–74.

    Article  CAS  Google Scholar 

  19. Jung TW, Kang C, Goh J, Chae SI, Kim HC, Lee TJ, et al. WISP1 promotes non-alcoholic fatty liver disease and skeletal muscle insulin resistance via TLR4/JNK signaling. J Cell Physiol. 2018;233(8):6077–87.

    Article  CAS  Google Scholar 

  20. Maiese K. WISP1: Clinical insights for a proliferative and restorative member of the CCN family. Curr Neurovasc Res. 2014;11(4):378–89.

    Article  CAS  Google Scholar 

  21. Association AD. Standards of medical care in diabetes–2011. Diabetes Care. 2011;34(Suppl 1):S11-61.

    Article  Google Scholar 

  22. Palsgaard J, Emanuelli B, Winnay JN, Sumara G, Karsenty G, Kahn CR. Cross-talk between insulin and Wnt signaling in preadipocytes: role of Wnt co-receptor low density lipoprotein receptor-related protein-5 (LRP5). J Biol Chem. 2012;287(15):12016–26.

    Article  CAS  Google Scholar 

  23. Liu L, Hu J, Yang L, Wang N, Liu Y, Wei X. Association of WISP1/CCN4 with Risk of overweight and gestational diabetes mellitus in Chinese pregnant women. Dis Markers. 2020;2020:4934206.

    PubMed  PubMed Central  Google Scholar 

  24. Sahin Ersoy G, Altun Ensari T, Subas S, Giray B, Simsek EE, Cevik O. WISP1 is a novel adipokine linked to metabolic parameters in gestational diabetes mellitus. J Matern Fetal Neonatal Med. 2017;30(8):942–6.

    Article  CAS  Google Scholar 

  25. Morrison MC, Kleemann R. Role of macrophage migration inhibitory factor in obesity, insulin resistance, type 2 diabetes, and associated hepatic co-morbidities: a comprehensive review of human and rodent studies. Front Immunol. 2015;6:308.

    Article  Google Scholar 

  26. Pellegrinelli V, Carobbio S, Vidal-Puig A. Adipose tissue plasticity: how fat depots respond differently to pathophysiological cues. Diabetologia. 2016;59(6):1075–88.

    Article  CAS  Google Scholar 

  27. Venkatesan B, Prabhu SD, Venkatachalam K, Mummidi S, Valente AJ, Clark RA, et al. WNT1-inducible signaling pathway protein-1 activates diverse cell survival pathways and blocks doxorubicin-induced cardiomyocyte death. Cell Signal. 2010;22(5):809–20.

    Article  CAS  Google Scholar 

  28. Wang S, Chong ZZ, Shang YC, Maiese K. Wnt1 inducible signaling pathway protein 1 (WISP1) blocks neurodegeneration through phosphoinositide 3 kinase/Akt1 and apoptotic mitochondrial signaling involving Bad, Bax, Bim, and Bcl-xL. Curr Neurovasc Res. 2012;9(1):20–31.

    Article  Google Scholar 

  29. Lim HW, Lee JE, Shin SJ, Lee YE, Oh SH, Park JY, et al. Identification of differentially expressed mRNA during pancreas regeneration of rat by mRNA differential display. Biochem Biophys Res Commun. 2002;299(5):806–12.

    Article  CAS  Google Scholar 

  30. Wang S, Chong ZZ, Shang YC, Maiese K. WISP1 neuroprotection requires FoxO3a post-translational modulation with autoregulatory control of SIRT1. Curr Neurovasc Res. 2013;10(1):54–69.

    Article  Google Scholar 

  31. Campos DB, Palin MF, Bordignon V, Murphy BD. The “beneficial” adipokines in reproduction and fertility. Int J Obes (Lond). 2008;32(2):223–31.

    Article  CAS  Google Scholar 

  32. Challier JC, Basu S, Bintein T, Minium J, Hotmire K, Catalano PM, et al. Obesity in pregnancy stimulates macrophage accumulation and inflammation in the placenta. Placenta. 2008;29(3):274–81.

    Article  CAS  Google Scholar 

  33. Kuzmicki M, Telejko B, Wawrusiewicz-Kurylonek N, Citko A, Lipinska D, Pliszka J, et al. The expression of suppressor of cytokine signaling 1 and 3 in fat and placental tissue from women with gestational diabetes. Gynecol Endocrinol. 2012;28(11):841–4.

    Article  CAS  Google Scholar 

  34. Lepercq J, Cauzac M, Lahlou N, Timsit J, Girard J, Auwerx J, et al. Overexpression of placental leptin in diabetic pregnancy: a critical role for insulin. Diabetes. 1998;47(5):847–50.

    Article  CAS  Google Scholar 

  35. Pantham P, Aye IL, Powell TL. Inflammation in maternal obesity and gestational diabetes mellitus. Placenta. 2015;36(7):709–15.

    Article  CAS  Google Scholar 

  36. Segovia SA, Vickers MH, Gray C, Reynolds CM. Maternal obesity, inflammation, and developmental programming. Biomed Res Int. 2014;2014:418975.

    Article  Google Scholar 

  37. Strakovsky RS, Pan YX. A decrease in DKK1, a WNT inhibitor, contributes to placental lipid accumulation in an obesity-prone rat model. Biol Reprod. 2012;86(3):81.

    Article  Google Scholar 

  38. Maiese K, Chong ZZ, Shang YC, Wang S. Targeting disease through novel pathways of apoptosis and autophagy. Expert Opin Ther Targets. 2012;16(12):1203–14.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Li.

Ethics declarations

Ethics approval

This study was approved by the Human Ethics Committee of the Sheng**g Hospital of China Medical University. It was designed in accordance with the principle of the Helsinki Declaration.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Lc., Xu, St. & Li, L. WISP1 is increased in the maternal serum, adipose tissue, and placenta of women with gestational diabetes mellitus. Int J Diabetes Dev Ctries 42, 269–275 (2022). https://doi.org/10.1007/s13410-021-00972-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13410-021-00972-2

Keywords

Navigation