Log in

EMP2 induces cytostasis and apoptosis via the TGFβ/SMAD/SP1 axis and recruitment of P2RX7 in urinary bladder urothelial carcinoma

  • Original Article
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

Urinary bladder urothelial carcinoma (UBUC) is a common malignant disease, and its high recurrence rates impose a heavy clinical burden. The objective of this study was to identify signaling pathways downstream of epithelial membrane protein 2 (EMP2), which induces cytostasis and apoptosis in UBUC.

Methods

A series of in vitro and in vivo assays using different UBUC-derived cell lines and mouse xenograft models were performed, respectively. In addition, primary UBUC specimens were evaluated by immunohistochemistry.

Results

Exogenous expression of EMP2 in J82 UBUC cells significantly decreased DNA replication and altered the expression levels of several TGFβ signaling-related proteins. EMP2 knockdown in BFTC905 UBUC cells resulted in opposite effects. EMP2-dysregulated cell cycle progression was found to be mediated by the TGFβ/TGFBR1/SP1 family member SMAD. EMP2 or purinergic receptor P2X7 (P2RX7) gene expression upregulation induced apoptosis via both intrinsic and extrinsic pathways. In 242 UBUC patient samples, P2RX7 protein levels were found to be significantly and positively correlated with EMP2 protein levels. Low P2RX7 levels conferred poor disease-specific and metastasis-free survival rates, and significantly decreased apoptotic cell rates. EMP2 was found to physically interact with P2RX7. In the presence of a P2RX7 agonist, BzATP, overexpression of both EMP2 and P2RX7 significantly increased apoptotic cell rates compared to overexpression of EMP2 or P2RX7 alone.

Conclusions

EMP2 induces cytostasis via the TGFβ/SMAD/SP1 axis and recruits P2RX7 to enhance apoptosis in UBUC. Our data provide new insights that may be employed for the design of UBUC targeting therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The raw data used to support the conclusions of this article will be made available by the corresponding author, without undue reservation to any qualified researcher.

Abbreviations

UBUC:

urinary bladder urothelial carcinoma

EMP2:

epithelial membrane protein 2

PI3K:

phosphatidylinositol 3-kinase

AKT:

AKT serine/threonine kinase

TGFBR1:

transforming growth factor beta receptor 1

SMAD:

SMAD family member

SP1:

Sp1 transcription factor

CKI:

cyclin-dependent kinase inhibitor

CDKN1A:

cyclin dependent kinase inhibitor 1A

TGFB2:

transforming growth factor beta 2

P2RX7:

purinergic receptor P2 × 7

BzATP:

2’(3’)-O-(4-benzoylbenzoly) ATP

CDK:

cyclin-dependent kinases

PI:

propidium iodide

FITC:

fluorescein isothiocyanate

TGFBR1:

transforming growth factor beta receptor 1

TP53:

tumor protein p53

ChIP:

chromatin immunoprecipitation

RIPA:

radioimmunoprecipitation assay

Co-IP:

coimmunoprecipitation

BMP:

bone morphogenetic protein

MYC:

MYC proto-oncogene, bHLH transcription factor

WEE1:

WEE1 G2 checkpoint kinase

PIK3R1:

phosphoinositide-3-kinase regulatory subunit 1

GSK3B:

glycogen synthase kinase 3 beta

References

  1. P Lichtenstein, NV Holm, PK Verkasalo, A Iliadou, J Kaprio, M Koskenvuo, E Pukkala, A Skytthe, K Hemminki, Environmental and heritable factors in the causation of cancer–analyses of cohorts of twins from Sweden, Denmark, and Finland. N. Engl. J. Med. 343, 78–85 (2000)

    Article  CAS  PubMed  Google Scholar 

  2. R.R. Hall, M.K. Parmar, A.B. Richards, P.H. Smith, Proposal for changes in cystoscopic follow up of patients with bladder cancer and adjuvant intravesical chemotherapy, BMJ. 308, 257–260 (1994)

  3. KD Sievert, B Amend, U Nagele, D Schilling, J Bedke, M Horstmann, J Hennenlotter, S Kruck, A Stenzl, Economic aspects of bladder cancer: what are the benefits and costs? World J. Urol. 27, 295–300 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. R.J. Urbanowicz, A.S. Andrew, M.R. Karagas, J.H. Moore, Role of genetic heterogeneity and epistasis in bladder cancer susceptibility and outcome: a learning classifier system approach. J. Am. Med. Inform. Assoc. 20, 603–612 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  5. Y. Wang, L. Chen, L. Ju, K. Qian, X. Liu, X. Wang, Y. **ao, Novel biomarkers associated with progression and prognosis of bladder cancer identified by co-expression analysis. Front. Oncol. 9, 1030 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  6. AP Mitra, DE Hansel, RJ Cote, Prognostic value of cell-cycle regulation biomarkers in bladder cancer. Semin. Oncol. 39, 524–533 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Z.P. Lin, Y.L. Zhu, E.S. Ratner, Targeting cyclin-dependent kinases for treatment of gynecologic cancers. Front. Oncol. 8, 303 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  8. L Tang, Y Zhang, Mitochondria are the primary target in isothiocyanate-induced apoptosis in human bladder cancer cells. Mol. Cancer Ther. 4, 1250–1259 (2005)

    Article  CAS  PubMed  Google Scholar 

  9. YW Wang, WM Li, WJ Wu, CY Chai, TY Chang, Y Sun, CJ Cheng, YL Shiue, SJ Su, HL Cheng, HS Liu, NH Chow, Epithelial membrane protein 2 is a prognostic indictor for patients with urothelial carcinoma of the upper urinary tract. Am. J. Pathol. 183, 709–719 (2013)

    Article  CAS  PubMed  Google Scholar 

  10. CF Li, WJ Wu, WR Wu, YJ Liao, LR Chen, CN Huang, CC Li, WM Li, HY Huang, YL Chen, SS Liang, NH Chow, YL Shiue, The cAMP responsive element binding protein 1 transactivates epithelial membrane protein 2, a potential tumor suppressor in the urinary bladder urothelial carcinoma. Oncotarget 6, 9220–9239 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  11. J. Massagué, TGFbeta in cancer. Cell 134, 215–230 (2008)

  12. C. Neuzillet, A. Tijeras-Raballand, R. Cohen, J. Cros, S. Faivre, E. Raymond, A. de Gramont, Targeting the TGFβ pathway for cancer therapy. Pharmacol. Ther. 147, 22–31 (2015)

    Article  CAS  PubMed  Google Scholar 

  13. W. Parichatikanond, T. Luangmonkong, S. Mangmool, H. Kurose, Therapeutic targets for the treatment of cardiac fibrosis and cancer: focusing on TGF-β signaling. Front. Cardiovasc. Med. 7, 34 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. J. Massagué, TGFβ signalling in context. Nat. Rev. Mol. Cell Biol. 13, 616–630 (2012)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. YE Zhang, Non-Smad pathways in TGF-beta signaling. Cell Res. 19, 128–139 (2009)

    Article  CAS  PubMed  Google Scholar 

  16. I. Ozaki, H. Hamajima, S. Matsuhashi, T. Mizuta, Regulation of TGF-β1-inducedpro-apoptotic signaling by growth factor receptors and extracellular matrix receptor integrins in the liver. Front. Physiol. 2, 78 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. A. Surprenant, F. Rassendren, E. Kawashima, R.A. North, G. Buell, The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2 × 7), Science (New York, N.Y.) 272, 735–738 (1996)

  18. H. Negoro, M. Urban-Maldonado, L.S. Liou, D.C. Spray, M.M. Thi, S.O. Suadicani, Pannexin 1 channels play essential roles in urothelial mechanotransduction and intercellular signaling. PLoS One 9, e106269 (2014)

  19. J. Sharma, B. Deb, I.A. George, S. Kapil, K. Coral, N. Kakkar, S. Pattanaik, A.K. Mandal, R.S. Mavuduru, P. Kumar, Somatic mutations profile of a young patient with metastatic urothelial carcinoma reveals mutations in genes involved in ion channels. Front. Oncol. 9, 435 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  20. HL Wilson, SA Wilson, A Surprenant, RA North, Epithelial membrane proteins induce membrane blebbing and interact with the P2 × 7 receptor C terminus. J. Biol. Chem. 277, 34017–34023 (2002)

    Article  CAS  PubMed  Google Scholar 

  21. C.F. Li, W.R. Wu, T.C. Chan, Y.H. Wang, L.R. Chen, W.J. Wu, B.W. Yeh, S.S. Liang, Y.L. Shiue, Transmembrane and coiled-coil domain 1 impairs the AKT Signaling pathway in urinary bladder urothelial carcinoma: a characterization of a tumor suppressor. Clin. Cancer Res. 23, 7650–7663 (2017)

    Article  CAS  PubMed  Google Scholar 

  22. J.G. Tate, S. Bamford, H.C. Jubb, Z. Sondka, D.M. Beare, N. Bindal, H. Boutselakis, C.G. Cole, C. Creatore, E. Dawson, P. Fish, B. Harsha, C. Hathaway, S.C. Jupe, C.Y. Kok, K. Noble, L. Ponting, C.C. Ramshaw, C.E. Rye, H.E. Speedy, R. Stefancsik, S.L. Thompson, S. Wang, S. Ward, P.J. Campbell, S.A. Forbes, COSMIC: the catalogue of somatic mutations in cancer. Nucleic Acids Res. 47, D941-d947 (2019)

  23. D.P. Nusinow, J. Szpyt, M. Ghandi, C.M. Rose, E.R. McDonald 3., M. Kalocsay, J. Jané-Valbuena, E. Gelfand, D.K. Schweppe, M. Jedrychowski, J. Golji, D.A. Porter, T. Rejtar, Y.K. Wang, G.V. Kryukov, F. Stegmeier, B.K. Erickson, L.A. Garraway, W.R. Sellers, S.P. Gygi, Quantitative proteomics of the cancer cell line encyclopedia. Cell 180, 387–402.e316 (2020)

  24. M. Kanehisa, Y. Sato, KEGG Mapper for inferring cellular functions from protein sequences. Protein Sci. 29, 28–35 (2020)

    Article  CAS  PubMed  Google Scholar 

  25. JM Li, MB Datto, X Shen, PP Hu, Y Yu, XF Wang, Sp1, but not Sp3, functions to mediate promoter activation by TGF-beta through canonical Sp1 binding sites. Nucleic Acids Res. 26, 2449–2456 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Q Jiang, D Guo, BX Lee, AM Van Rhee, YC Kim, RA Nicholas, JB Schachter, TK Harden, KA Jacobson, A mutational analysis of residues essential for ligand recognition at the human P2Y1 receptor. Mol. Pharmacol. 52, 499–507 (1997)

    Article  CAS  PubMed  Google Scholar 

  27. G Collo, S Neidhart, E Kawashima, M Kosco-Vilbois, RA North, G Buell, Tissue distribution of the P2 × 7 receptor. Neuropharmacology 36, 1277–1283 (1997)

    Article  CAS  PubMed  Google Scholar 

  28. R Sluyter, The P2 × 7 Receptor. Adv. Exp. Med. Biol. 1051, 17–53 (2017)

    Article  PubMed  Google Scholar 

  29. GE Torres, TM Egan, MM Voigt, Hetero-oligomeric assembly of P2X receptor subunits. Specificities exist with regard to possible partners. J. Biol. Chem. 274, 6653–6659 (1999)

    Article  CAS  PubMed  Google Scholar 

  30. M Solle, J Labasi, DG Perregaux, E Stam, N Petrushova, BH Koller, RJ Griffiths, CA Gabel, Altered cytokine production in mice lacking P2 × (7) receptors. J. Biol. Chem. 276, 125–132 (2001)

    Article  CAS  PubMed  Google Scholar 

  31. H.Z. Ke, H. Qi, A.F. Weidema, Q. Zhang, N. Panupinthu, D.T. Crawford, W.A. Grasser, V.M. Paralkar, M. Li, L.P. Audoly, C.A. Gabel, W.S. Jee, S.J. Dixon, S.M. Sims, D.D. Thompson, Deletion of the P2 × 7 nucleotide receptor reveals its regulatory roles in bone formation and resorption. Mol. Endocrinol. (Baltimore Md.) 17, 1356–1367 (2003)

    Article  CAS  Google Scholar 

  32. J.M. Labasi, N. Petrushova, C. Donovan, S. McCurdy, P. Lira, M.M. Payette, W. Brissette, J.R. Wicks, L. Audoly, C.A. Gabel, Absence of the P2 × 7 receptor alters leukocyte function and attenuates an inflammatory response. J. Immunol. (Baltimore, Md.: 1950) 168, 6436–6445 (2002)

  33. IP Chessell, JP Hatcher, C Bountra, AD Michel, JP Hughes, P Green, J Egerton, M Murfin, J Richardson, WL Peck, CB Grahames, MA Casula, Y Yiangou, R Birch, P Anand, GN Buell, Disruption of the P2 × 7 purinoceptor gene abolishes chronic inflammatory and neuropathic pain. Pain 114, 386–396 (2005)

    Article  CAS  PubMed  Google Scholar 

  34. HP Buisman, TH Steinberg, J Fischbarg, SC Silverstein, SA Vogelzang, C Ince, DL Ypey, PC Leijh, Extracellular ATP induces a large nonselective conductance in macrophage plasma membranes. Proc. Natl. Acad. Sci. U.S.A. 85, 7988–7992 (1988)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. B Allard, MS Longhi, SC Robson, J Stagg, The ectonucleotidases CD39 and CD73: Novel checkpoint inhibitor targets. Immunol. Rev. 276, 121–144 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. F Di Virgilio, E Adinolfi, Extracellular purines, purinergic receptors and tumor growth. Oncogene 36, 293–303 (2017)

    Article  PubMed  CAS  Google Scholar 

  37. F. Di Virgilio, D. Dal Ben, A.C. Sarti, A.L. Giuliani, S. Falzoni, The P2 × 7 receptor in infection and inflammation. Immunity 47, 15–31 (2017)

    Article  PubMed  CAS  Google Scholar 

  38. AW Lohman, M Billaud, BE Isakson, Mechanisms of ATP release and signalling in the blood vessel wall. Cardiovasc. Res. 95, 269–280 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. F Qian, J **ao, B Hu, N Sun, W Yin, J Zhu, High expression of P2 × 7R is an independent postoperative indicator of poor prognosis in colorectal cancer. Hum. Pathol. 64, 61–68 (2017)

    Article  CAS  PubMed  Google Scholar 

  40. Y Zhang, J Ding, L Wang, The role of P2 × 7 receptor in prognosis and metastasis of colorectal cancer. Adv. Med. Sci. 64, 388–394 (2019)

    Article  PubMed  Google Scholar 

  41. AA Santos Jr., AR Cappellari, FO de Marchi, MP Gehring, A Zaparte, CA Brandao, TG Lopes, VD da Silva, LFR Pinto, LEB Savio, ACA Moreira-Souza, R Coutinho-Silva, JD Paccez, LF Zerbini, FB Morrone, Potential role of P2 × 7R in esophageal squamous cell carcinoma proliferation. Purinergic Signal. 13, 279–292 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. W. Lili, L. Yun, W. Tingran, W. **a, S. Yanlei, Highlight Article: P2RX7 functions as a putative biomarker of gastric cancer and contributes to worse prognosis. Exp. Biol. Med. (Maywood, N.J.) 244, 734–742 (2019)

    Article  CAS  Google Scholar 

  43. F Di Virgilio, AC Sarti, S Falzoni, E De Marchi, E Adinolfi, Extracellular ATP and P2 purinergic signalling in the tumour microenvironment. Nat. Rev. Cancer 18, 601–618 (2018)

    Article  PubMed  CAS  Google Scholar 

  44. P Hofman, J Cherfils-Vicini, M Bazin, M Ilie, T Juhel, X Hebuterne, E Gilson, A Schmid-Alliana, O Boyer, S Adriouch, Vouret-Craviari, Genetic and pharmacological inactivation of the purinergic P2RX7 receptor dampens inflammation but increases tumor incidence in a mouse model of colitis-associated cancer. Cancer Res. 75, 835–845 (2015)

    Article  CAS  PubMed  Google Scholar 

  45. F Ghiringhelli, L Apetoh, A Tesniere, L Aymeric, Y Ma, C Ortiz, K Vermaelen, T Panaretakis, G Mignot, E Ullrich, JL Perfettini, F Schlemmer, E Tasdemir, M Uhl, P Genin, A Civas, B Ryffel, J Kanellopoulos, J Tschopp, F Andre, R Lidereau, NM McLaughlin, NM Haynes, MJ Smyth, G Kroemer, L Zitvogel, Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors. Nat. Med. 15, 1170–1178 (2009)

    Article  CAS  PubMed  Google Scholar 

  46. AV Greig, C Linge, V Healy, P Lim, E Clayton, MH Rustin, DA McGrouther, G Burnstock, Expression of purinergic receptors in non-melanoma skin cancers and their functional roles in A431 cells. J. Invest. Dermatol. 121, 315–327 (2003)

    Article  CAS  PubMed  Google Scholar 

  47. J. Wang, M. Cheng, I.K.M. Law, C. Ortiz, M. Sun, H.W. Koon, Cathelicidin suppresses colon cancer metastasis via a P2RX7-dependent mechanism. Mol. Ther. Oncolytics 12, 195–203 (2019)

  48. P ten Dijke, K Miyazono, CH Heldin, Signaling via hetero-oligomeric complexes of type I and type II serine/threonine kinase receptors. Curr. Opin. Cell Biol. 8, 139–145 (1996)

    Article  PubMed  Google Scholar 

  49. C Denicourt, SF Dowdy, Another twist in the transforming growth factor beta-induced cell-cycle arrest chronicle. Proc. Natl. Acad. Sci. U.S.A. 100, 15290–15291 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. K Pardali, A Moustakas, Actions of TGF-beta as tumor suppressor and pro-metastatic factor in human cancer. Biochim. Biophys. Acta 1775, 21–62 (2007)

    CAS  PubMed  Google Scholar 

  51. AL Gartel, E Goufman, F Najmabadi, AL Tyner, Sp1 and Sp3 activate p21 (WAF1/CIP1) gene transcription in the Caco-2 colon adenocarcinoma cell line. Oncogene 19, 5182–5188 (2000)

    Article  CAS  PubMed  Google Scholar 

  52. F Chen, E Kim, CC Wang, LE Harrison, Ciglitazone-induced p27 gene transcriptional activity is mediated through Sp1 and is negatively regulated by the MAPK signaling pathway. Cell. Signal. 17, 1572–1577 (2005)

    Article  CAS  PubMed  Google Scholar 

  53. XH Feng, X Lin, R Derynck, Smad2, Smad3 and Smad4 cooperate with Sp1 to induce p15(Ink4B) transcription in response to TGF-beta. EMBO J. 19, 5178–5193 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. K.A. Waite, C. Eng, From developmental disorder to heritable cancer: it’s all in the BMP/TGF-beta family. Nat. Rev. Genet. 4, 763–773 (2003)

  55. CJ Sherr, JM Roberts, CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 13, 1501–1512 (1999)

    Article  CAS  PubMed  Google Scholar 

  56. JY Yi, I Shin, CL Arteaga, Type I transforming growth factor beta receptor binds to and activates phosphatidylinositol 3-kinase. J. Biol. Chem. 280, 10870–10876 (2005)

    Article  CAS  PubMed  Google Scholar 

  57. Y.E. Zhang, Non-smad signaling pathways of the TGF-β family. Cold Spring Harb. Perspect. Biol. 9 (2017)

  58. M.G. Sugiyama, G.D. Fairn, C.N. Antonescu, Akt-ing up just about everywhere: compartment-specific Akt activation and function in receptor tyrosine kinase signaling. Front. Cell Dev. Biol. 7, 70 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  59. K.K. Aben, J.A. Witjes, M.P. Schoenberg, C. Hulsbergen-van de, A.L. Kaa, Verbeek, L.A. Kiemeney, Familial aggregation of urothelial cell carcinoma, Int. J. Cancer 98, 274–278 (2002)

Download references

Funding

This work was supported by the Ministry of Science and Technology, Taiwan (107-2314-B-110-001-MY3) to YL Shiue.

Author information

Authors and Affiliations

Authors

Contributions

CF, CT and YL conceived the indications. TC, PP, JC, SY, YW and MS performed the experiments. CF and CT analyzed the data. CF, CT and YL contributed to the preparation of the manuscript, and read and approved the submitted version.

Corresponding author

Correspondence to Yow-Ling Shiue.

Ethics declarations

This study was approved by the Affidavit of Approval (#109041701) of Animal Use Protocol, Chi-Mei Medical Center (Tainan, Taiwan). For immunohistochemistry, the Institutional Review Board of Chi Mei Medical Center approved the retrospective retrieval (IRB10302015) of 242 UBUCs with available tissue blocks, of patients who underwent surgical treatment with curative intent between 1996 and 2004, while those who underwent palliative resection were excluded. This article does not contain any studies involving human participants performed by any of the authors.

Conflict of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Consent for publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1.85 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, CF., Chan, TC., Pan, CT. et al. EMP2 induces cytostasis and apoptosis via the TGFβ/SMAD/SP1 axis and recruitment of P2RX7 in urinary bladder urothelial carcinoma. Cell Oncol. 44, 1133–1150 (2021). https://doi.org/10.1007/s13402-021-00624-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-021-00624-x

Keywords

Navigation