Log in

Green engineering of cellulose nanofibers and nanopapers from Wodyetia bifurcata fruits: a sustainable approach with emphasis on process optimization and tensile property assessment

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Nanocellulose emerges as a highly promising material with versatile applications, offering solutions to environmental and sustainability challenges. This study delves into the extraction of cellulose nanofibers (CNFs) from Wodyetia bifurcata fruit pulp through mild oxalic acid hydrolysis assisted by steam explosion. To ensure environmental compatibility, chlorine-free pre-treatments were applied to eliminate non-cellulosic components. Chemical composition analysis verified the effective removal of non-cellulosic elements, validated by Fourier transform infrared spectroscopy (FTIR). Solid-state 13C nuclear magnetic resonance (13C NMR) spectroscopy confirmed the presence of type I cellulose α-polymorph in the CNF, while a crystallinity index of 60% was determined by X-ray diffraction analysis (XRD). The transmission electron microscopy (TEM) images revealed a fibrous morphology with a fiber diameter ranging from 9 to 36 nm. Dynamic light scattering (DLS) was employed to corroborate the observed fiber diameter. Mild acid hydrolysis elevated the maximum degradation temperature (Tmax) of CNF to 39 °C compared to the pristine sample. Furthermore, this research explores the application of CNFs in nanopaper development using a casting method. The resulting nanopapers exhibited a tensile strength of ~ 17 MPa and a transmittance of 25%. These nanopapers present a viable pathway toward eco-friendly products in various industries, promising to revolutionize upcoming sustainable packaging technologies.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All of the data sets that were included and/or examined in the present study can be obtained from the corresponding author upon request.

References 

  1. Ewnetu Sahlie M, Zeleke TS, Aklog Yihun F (2022) Water hyacinth: a sustainable cellulose source for cellulose nanofiber production and application as recycled paper reinforcement. J Polym Res 29:230. https://doi.org/10.1007/s10965-022-03089-0

    Article  Google Scholar 

  2. Ra**ipriya M, Nagalakshmaiah M, Robert M, Elkoun S (2018) Importance of agricultural and industrial waste in the field of nanocellulose and recent industrial developments of wood based nanocellulose: a review. ACS Sustain Chem Eng 6:2807–2828. https://doi.org/10.1021/acssuschemeng.7b03437

    Article  Google Scholar 

  3. Ilyas RA, Sapuan SM, Ibrahim R et al (2020) Production, processes and modification of nanocrystalline cellulose from agro-waste: a review. Nanocrystalline Materials. IntechOpen. https://doi.org/10.5772/intechopen.87001

  4. Palm F, Perez K, Kobayashi K et al (2009) Foxtail palm, pp 8–11. https://api.semanticscholar.org/CorpusID:130246365

  5. **e H, Du H, Yang X, Si C (2018) Recent strategies in preparation of cellulose nanocrystals and cellulose nanofibrils derived from raw cellulose materials. Int J Polym Sci 2018:. https://doi.org/10.1155/2018/7923068

  6. Pakutsah K, Aht-Ong D (2020) Facile isolation of cellulose nanofibers from water hyacinth using water-based mechanical defibrillation: insights into morphological, physical, and rheological properties. Int J Biol Macromol 145:64–76. https://doi.org/10.1016/j.ijbiomac.2019.12.172

    Article  Google Scholar 

  7. Oliva C, Huang W, El Badri S et al (2020) Concentrated sulfuric acid aqueous solution enables rapid recycling of cellulose from waste paper into antimicrobial packaging. Carbohydr Polym 241:116256. https://doi.org/10.1016/j.carbpol.2020.116256

    Article  Google Scholar 

  8. Almashhadani AQ, Leh CP, Chan SY et al (2022) Nanocrystalline cellulose isolation via acid hydrolysis from non-woody biomass: importance of hydrolysis parameters. Carbohydr Polym 286:119285. https://doi.org/10.1016/j.carbpol.2022.119285

    Article  Google Scholar 

  9. Perumal AB, Nambiar RB, Sellamuthu PS et al (2022) Extraction of cellulose nanocrystals from areca waste and its application in eco-friendly biocomposite film. Chemosphere 287:132084. https://doi.org/10.1016/j.chemosphere.2021.132084

    Article  Google Scholar 

  10. Velázquez ME, Ferreiro OB, Menezes DB, et al. (2022) Nanocellulose extracted from Paraguayan residual agro-industrial biomass: extraction process, physicochemical and morphological characterization. Sustain 14:. https://doi.org/10.3390/su141811386

  11. Ravindran L, Sreekala MS, Thomas S (2019) Novel processing parameters for the extraction of cellulose nanofibres (CNF) from environmentally benign pineapple leaf fibres (PALF): structure-property relationships. Int J Biol Macromol 131:858–870. https://doi.org/10.1016/j.ijbiomac.2019.03.134

    Article  Google Scholar 

  12. Thomas MG, Abraham E, Jyotishkumar P et al (2015) Nanocelluloses from jute fibers and their nanocomposites with natural rubber: preparation and characterization. Int J Biol Macromol 81:768–777. https://doi.org/10.1016/j.ijbiomac.2015.08.053

    Article  Google Scholar 

  13. Neenu KV, Midhun Dominic CD, Begum PMS et al (2022) Effect of oxalic acid and sulphuric acid hydrolysis on the preparation and properties of pineapple pomace derived cellulose nanofibers and nanopapers. Int J Biol Macromol 209:1745–1759. https://doi.org/10.1016/j.ijbiomac.2022.04.138

    Article  Google Scholar 

  14. Midhun Dominic CD, Raj V, Neenu KV et al (2022) Chlorine-free extraction and structural characterization of cellulose nanofibers from waste husk of millet (Pennisetum glaucum). Int J Biol Macromol 206:92–104. https://doi.org/10.1016/j.ijbiomac.2022.02.078

    Article  Google Scholar 

  15. Midhun Dominic CD, Maheswary S, Neenu KV et al (2022) Colocasia esculenta stems for the isolation of cellulose nanofibers: a chlorine-free method for the biomass conversion. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-022-03171-z

    Article  Google Scholar 

  16. Faradilla RHF, Lee G, Arns J et al (2017) Characteristics of a free-standing film from banana pseudostem nanocellulose generated from TEMPO-mediated oxidation. Carbohydr Polym 174:1156–1163. https://doi.org/10.1016/j.carbpol.2017.07.025

    Article  Google Scholar 

  17. Ra**ipriya M, Nagalakshmaiah M, Robert M, Elkoun S (2018) Homogenous and transparent nanocellulosic films from carrot. Ind Crops Prod 118:53–64. https://doi.org/10.1016/j.indcrop.2018.02.076

    Article  Google Scholar 

  18. Lay M, Méndez JA, Delgado-Aguilar M et al (2016) Strong and electrically conductive nanopaper from cellulose nanofibers and polypyrrole. Carbohydr Polym 152:361–369. https://doi.org/10.1016/j.carbpol.2016.06.102

    Article  Google Scholar 

  19. Chávez-Guerrero L, Toxqui-Terán A, Pérez-Camacho O (2022) One-pot isolation of nanocellulose using pelagic Sargassum spp. from the Caribbean coastline. J Appl Phycol 34:637–645. https://doi.org/10.1007/s10811-021-02643-5

    Article  Google Scholar 

  20. Juárez-Luna GN, Favela-Torres E, Quevedo IR, Batina N (2019) Enzymatically assisted isolation of high-quality cellulose nanoparticles from water hyacinth stems. Carbohydr Polym 220:110–117. https://doi.org/10.1016/j.carbpol.2019.05.058

    Article  Google Scholar 

  21. Ilyas RA, Sapuan SM, Atikah MSN et al (2021) Effect of hydrolysis time on the morphological, physical, chemical, and thermal behavior of sugar palm nanocrystalline cellulose (Arenga pinnata (Wurmb.) Merr). Text Res J 91:152–167. https://doi.org/10.1177/0040517520932393

    Article  Google Scholar 

  22. Nagarajan KJ, Balaji AN, Ramanujam NR (2019) Extraction of cellulose nanofibers from Cocos nucifera var aurantiaca peduncle by ball milling combined with chemical treatment. Carbohydr Polym 212:312–322. https://doi.org/10.1016/j.carbpol.2019.02.063

    Article  Google Scholar 

  23. Debiagi F, Faria-Tischer PCS, Mali S (2020) Nanofibrillated cellulose obtained from soybean hull using simple and eco-friendly processes based on reactive extrusion. Cellulose 27:1975–1988. https://doi.org/10.1007/s10570-019-02893-0

    Article  Google Scholar 

  24. Syafri E, Jamaluddin SNH et al (2022) Isolation and characterization of cellulose nanofibers from Agave gigantea by chemical-mechanical treatment. Int J Biol Macromol 200:25–33. https://doi.org/10.1016/j.ijbiomac.2021.12.111

    Article  Google Scholar 

  25. Yuan JC, Huang R, Jiang LY et al (2023) Facile production of cellulose nanofibers from raw elephant grass by an aluminum chloride-enhanced acidic deep eutectic solvent. Int J Biol Macromol 246:125687. https://doi.org/10.1016/j.ijbiomac.2023.125687

    Article  Google Scholar 

  26. Mantovan J, Giraldo GAG, Marim BM et al (2020) Valorization of orange bagasse through one-step physical and chemical combined processes to obtain a cellulose-rich material. J Sci Food Agric. https://doi.org/10.1002/jsfa.10859

    Article  Google Scholar 

  27. Shen P, Tang Q, Chen X, Li Z (2022) Nanocrystalline cellulose extracted from bast fibers : preparation, characterization, and application. Carbohydr Polym 290:119462. https://doi.org/10.1016/j.carbpol.2022.119462

    Article  Google Scholar 

  28. Kalita E, Nath BK, Deb P et al (2015) High quality fluorescent cellulose nanofibers from endemic rice husk: isolation and characterization. Carbohydr Polym 122:308–313. https://doi.org/10.1016/j.carbpol.2014.12.075

    Article  Google Scholar 

  29. Chirayil CJ, Joy J, Mathew L et al (2014) Isolation and characterization of cellulose nanofibrils from Helicteres isora plant. Ind Crops Prod 59:27–34. https://doi.org/10.1016/j.indcrop.2014.04.020

    Article  Google Scholar 

  30. Lima AR, Cristofoli NL, Rosa da Costa AM et al (2023) Comparative study of the production of cellulose nanofibers from agro-industrial waste streams of Salicornia ramosissima by acid and enzymatic treatment. Food Bioprod Process 137:214–225. https://doi.org/10.1016/j.fbp.2022.11.012

    Article  Google Scholar 

  31. Zaki FA, Abdullah I, Ahmad I (2014) The physical and chemical natures of cellulose extracted from torch ginger stems. Int J Mater Eng Innov 5:48–60. https://doi.org/10.1504/IJMATEI.2014.059484

    Article  Google Scholar 

  32. Wang J, Xu J, Zhu S et al (2021) Preparation of nanocellulose in high yield via chemi-mechanical synergy. Carbohydr Polym 251:117094. https://doi.org/10.1016/j.carbpol.2020.117094

    Article  Google Scholar 

  33. Julie Chandra CS, George N, Narayanankutty SK (2016) Isolation and characterization of cellulose nanofibrils from arecanut husk fibre. Carbohydr Polym 142:158–166. https://doi.org/10.1016/j.carbpol.2016.01.015

    Article  Google Scholar 

  34. Fu T-K, Li J-H, Wei X-Y, et al (2016) Preparation and characterization of pineapple leaf nanocellulose by high pressure homogenization. In: Proceedings of the 2nd annual international conference on advanced material engineering (AME 2016). Atlantis Press, Paris, France, pp 713–720. https://doi.org/10.2991/ame-16.2016.119

  35. Chen YW, Hasanulbasori MA, Chiat PF, Lee HV (2019) Pyrus pyrifolia fruit peel as sustainable source for spherical and porous network based nanocellulose synthesis via one-pot hydrolysis system. Int J Biol Macromol 123:1305–1319. https://doi.org/10.1016/j.ijbiomac.2018.10.013

    Article  Google Scholar 

  36. Szymańska-Chargot M, Chylińska M, Pieczywek PM, Zdunek A (2019) Tailored nanocellulose structure depending on the origin. Example of apple parenchyma and carrot root celluloses. Carbohydr Polym 210:186–195. https://doi.org/10.1016/j.carbpol.2019.01.070

    Article  Google Scholar 

  37. Nasution H, Yahya EB, Abdul Khalil HPS et al (2022) Extraction and isolation of cellulose nanofibers from carpet wastes using supercritical carbon dioxide approach. Polymers (Basel) 14:1–14. https://doi.org/10.3390/polym14020326

    Article  Google Scholar 

  38. Bano S, Negi YS (2017) Studies on cellulose nanocrystals isolated from groundnut shells. Carbohydr Polym 157:1041–1049. https://doi.org/10.1016/j.carbpol.2016.10.069

    Article  Google Scholar 

  39. Raza M, Abu-Jdayil B, Banat F, Al-Marzouqi AH (2022) Isolation and characterization of cellulose nanocrystals from date palm waste. ACS Omega 7:25366–25379. https://doi.org/10.1021/acsomega.2c02333

    Article  Google Scholar 

  40. Mariño MA, Rezende CA, Tasic L (2018) A multistep mild process for preparation of nanocellulose from orange bagasse. Cellulose 25:5739–5750. https://doi.org/10.1007/s10570-018-1977-y

    Article  Google Scholar 

  41. Chen Q, **ong J, Chen G, Tan T (2020) Preparation and characterization of highly transparent hydrophobic nanocellulose film using corn husks as main material. Int J Biol Macromol 158:781–789. https://doi.org/10.1016/j.ijbiomac.2020.04.250

    Article  Google Scholar 

  42. Love R, Whiteside WS, Doh H, et al. (2022) Physicochemical characterizations of nanocellulose isolated from kudzu (Pueraria montana var. lobata) for potential packaging applications. SSRN Electron J 1–27. https://doi.org/10.2139/ssrn.4076935

  43. Pereira PHF, Ornaghi Júnior HL, Coutinho LV et al (2020) Obtaining cellulose nanocrystals from pineapple crown fibers by free-chlorite hydrolysis with sulfuric acid: physical, chemical and structural characterization. Cellulose 27:5745–5756. https://doi.org/10.1007/s10570-020-03179-6

    Article  Google Scholar 

  44. Sai Prasanna N, Mitra J (2020) Isolation and characterization of cellulose nanocrystals from Cucumis sativus peels. Carbohydr Polym 247:116706. https://doi.org/10.1016/j.carbpol.2020.116706

    Article  Google Scholar 

  45. Al-Dulaimi AA, Wanrosli WD (2017) Isolation and characterization of nanocrystalline cellulose from totally chlorine free oil palm empty fruit bunch pulp. J Polym Environ 25:192–202. https://doi.org/10.1007/s10924-016-0798-z

    Article  Google Scholar 

  46. Kéri M, Palcsu L, Túri M et al (2015) 13C NMR analysis of cellulose samples from different preparation methods. Cellulose 22:2211–2220. https://doi.org/10.1007/s10570-015-0642-y

    Article  Google Scholar 

  47. Trilokesh C, Uppuluri KB (2019) Isolation and characterization of cellulose nanocrystals from jackfruit peel. Sci Rep 9:1–9. https://doi.org/10.1038/s41598-019-53412-x

    Article  Google Scholar 

  48. Foster EJ, Moon RJ, Agarwal UP et al (2018) Current characterization methods for cellulose nanomaterials. Chem Soc Rev 47:2609–2679. https://doi.org/10.1039/C6CS00895J

    Article  Google Scholar 

  49. Wang Y, Wei X, Li J et al (2015) Study on nanocellulose by high pressure homogenization in homogeneous isolation. Fibers Polym 16:572–578. https://doi.org/10.1007/s12221-015-0572-1

    Article  Google Scholar 

  50. Duan L, Yu W, Li Z (2017) Analysis of structural changes in jute fibers after peracetic acid treatment. J Eng Fiber Fabr 12:155892501701200. https://doi.org/10.1177/155892501701200104

    Article  Google Scholar 

  51. Reddy KO, Maheswari CU, Dhlamini MS et al (2018) Extraction and characterization of cellulose single fibers from native African Napier grass. Carbohydr Polym 188:85–91. https://doi.org/10.1016/j.carbpol.2018.01.110

    Article  Google Scholar 

  52. Hassan SH, Velayutham TS, Chen YW, Lee HV (2021) TEMPO-oxidized nanocellulose films derived from coconut residues: physicochemical, mechanical and electrical properties. Int J Biol Macromol 180:392–402. https://doi.org/10.1016/j.ijbiomac.2021.03.066

    Article  Google Scholar 

  53. Orasugh JT, Saha NR, Sarkar G et al (2018) A facile comparative approach towards utilization of waste cotton lint for the synthesis of nano-crystalline cellulose crystals along with acid recovery. Int J Biol Macromol 109:1246–1252. https://doi.org/10.1016/j.ijbiomac.2017.11.123

    Article  Google Scholar 

  54. Gupta V, Ramakanth D, Verma C et al (2021) Isolation and characterization of cellulose nanocrystals from amla (Phyllanthus emblica) pomace. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-021-01852-9

    Article  Google Scholar 

  55. An VN, Thuc H, Nhan C et al (2020) Extraction of high crystalline nanocellulose from biorenewable sources of Vietnamese agricultural wastes. J Polym Environ 28:1465–1474. https://doi.org/10.1007/s10924-020-01695-x

    Article  Google Scholar 

  56. Mandal A, Chakrabarty D (2011) Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohydr Polym 86:1291–1299. https://doi.org/10.1016/j.carbpol.2011.06.030

    Article  Google Scholar 

  57. Karina M, Satoto R, Dawam Abdullah AH, Yudianti R (2020) Properties of nanocellulose: obtained from sugar palm (Arenga pinnata) fiber by acid hydrolysis in combination with high-pressure homogenization. Cellul Chem Technol 54:33–38. https://doi.org/10.35812/CelluloseChemTechnol.2020.54.04

    Article  Google Scholar 

  58. Chen Y, Wu Q, Huang B et al (2014) Isolation and characteristics of cellulose and nanocellulose from lotus leaf stalk agro-wastes. BioResources 10:684–696. https://doi.org/10.15376/biores.10.1.684-696

    Article  Google Scholar 

  59. Souza AG, Santos DF, Ferreira RR et al (2020) Innovative process for obtaining modified nanocellulose from soybean straw. Int J Biol Macromol 165:1803–1812. https://doi.org/10.1016/j.ijbiomac.2020.10.036

    Article  Google Scholar 

  60. Gond RK, Gupta MK, Jawaid M (2021) Extraction of nanocellulose from sugarcane bagasse and its characterization for potential applications. Polym Compos 42:5400–5412. https://doi.org/10.1002/pc.26232

    Article  Google Scholar 

  61. Shrestha P, Bilal M, Kumar A (2021) Development of antibacterial biocomposites reinforced with cellulose nanocrystals derived from banana pseudostem development of antibacterial biocomposites reinforced with cellulose nanocrystals derived from banana pseudostem. Carbohydr Polym Technol Appl 2:100112. https://doi.org/10.1016/j.carpta.2021.100112

    Article  Google Scholar 

  62. Camacho M, Ureña YRC, Lopretti M et al (2017) Synthesis and characterization of nanocrystalline cellulose derived from pineapple peel residues. J Renew Mater 5:271–279. https://doi.org/10.7569/JRM.2017.634117

    Article  Google Scholar 

  63. Onkarappa HS, Prakash GK, Pujar GH et al (2020) Facile synthesis and characterization of nanocellulose from Zea mays husk. Polym Compos 41:3153–3159. https://doi.org/10.1002/pc.25606

    Article  Google Scholar 

  64. Flauzino Neto WP, Silvério HA, Dantas NO, Pasquini D (2013) Extraction and characterization of cellulose nanocrystals from agro-industrial residue – soy hulls. Ind Crops Prod 42:480–488. https://doi.org/10.1016/j.indcrop.2012.06.041

    Article  Google Scholar 

  65. Debiagi F, Faria-Tischer PCS, Mali S (2021) A green approach based on reactive extrusion to produce nanofibrillated cellulose from oat hull. Waste and Biomass Valorization 12:1051–1060. https://doi.org/10.1007/s12649-020-01025-1

    Article  Google Scholar 

  66. Melikoğlu AY, Bilek SE, Cesur S (2019) Optimum alkaline treatment parameters for the extraction of cellulose and production of cellulose nanocrystals from apple pomace. Carbohydr Polym 215:330–337. https://doi.org/10.1016/j.carbpol.2019.03.103

    Article  Google Scholar 

  67. Hafemann E, Battisti R, Bresolin D et al (2020) Enhancing chlorine-free purification routes of rice husk biomass waste to obtain cellulose nanocrystals. Waste and Biomass Valorization 11:6595–6611. https://doi.org/10.1007/s12649-020-00937-2

    Article  Google Scholar 

  68. Prado KS, Gonzales D, Spinacé MAS (2019) Recycling of viscose yarn waste through one-step extraction of nanocellulose. Int J Biol Macromol 136:729–737. https://doi.org/10.1016/j.ijbiomac.2019.06.124

    Article  Google Scholar 

  69. Mahardika M, Abral H, Kasim A et al (2018) Production of nanocellulose from pineapple leaf fibers via high-shear homogenization and ultrasonication. Fibers 6:1–12. https://doi.org/10.3390/fib6020028

    Article  Google Scholar 

  70. Maciel MMÁD, de Benini KCC, Voorwald HJC, Cioffi MOH (2019) Obtainment and characterization of nanocellulose from an unwoven industrial textile cotton waste: effect of acid hydrolysis conditions. Int J Biol Macromol 126:496–506. https://doi.org/10.1016/j.ijbiomac.2018.12.202

    Article  Google Scholar 

  71. Liu C, Li M, Mei C et al (2020) Cellulose nanofibers from rapidly microwave-delignified energy cane bagasse and their application in drilling fluids as rheology and filtration modifiers. Ind Crops Prod 150:112378. https://doi.org/10.1016/j.indcrop.2020.112378

    Article  Google Scholar 

  72. Rashid S, Dutta H (2020) Characterization of nanocellulose extracted from short, medium and long grain rice husks. Ind Crops Prod 154:112627. https://doi.org/10.1016/j.indcrop.2020.112627

    Article  Google Scholar 

  73. Gabriel T, Belete A, Hause G et al (2021) Isolation and characterization of cellulose nanocrystals from different lignocellulosic residues: a comparative study. J Polym Environ 29:2964–2977. https://doi.org/10.1007/s10924-021-02089-3

    Article  Google Scholar 

  74. Khan MN, Rehman N, Sharif A et al (2020) Environmentally benign extraction of cellulose from dunchi fiber for nanocellulose fabrication. Int J Biol Macromol 153:72–78. https://doi.org/10.1016/j.ijbiomac.2020.02.333

    Article  Google Scholar 

  75. Yadav C, Saini A, Maji PK (2017) Energy efficient facile extraction process of cellulose nanofibres and their dimensional characterization using light scattering techniques. Carbohydr Polym 165:276–284. https://doi.org/10.1016/j.carbpol.2017.02.049

    Article  Google Scholar 

  76. Kalita E, Nath BK, Agan F et al (2015) Isolation and characterization of crystalline, autofluorescent, cellulose nanocrystals from saw dust wastes. Ind Crops Prod 65:550–555. https://doi.org/10.1016/j.indcrop.2014.10.004

    Article  Google Scholar 

  77. Tan VY, Chou PM (2020) Effectiveness of using different mechanical methods for extraction of nanocellulose from kapok husk. AIP conference proceedings, p 020027. https://doi.org/10.1063/5.0001967

  78. Song Y, Jiang W, Zhang Y et al (2018) A novel process of nanocellulose extraction from kenaf bast. Mater Res Express 5:085032. https://doi.org/10.1088/2053-1591/aac80d

    Article  Google Scholar 

  79. Naduparambath S, **itha TV, Shaniba V et al (2018) Isolation and characterisation of cellulose nanocrystals from sago seed shells. Carbohydr Polym 180:13–20. https://doi.org/10.1016/j.carbpol.2017.09.088

    Article  Google Scholar 

  80. Salimi F, Moradi M, Tajik H, Molaei R (2020) Optimization and characterization of eco-friendly antimicrobial nanocellulose sheet prepared using carbon dots of white mulberry (Morus alba L.). J Sci Food Agric. https://doi.org/10.1002/jsfa.10974

    Article  Google Scholar 

  81. Shao H, He L, **ang L et al (2021) Transparent and UV-absorbing nanocellulose films prepared by directly dissolving microwave liquefied bamboo in TBAA/DMSO co-solvent system. Ind Crops Prod 171:113899. https://doi.org/10.1016/j.indcrop.2021.113899

    Article  Google Scholar 

  82. Sun X, Wu Q, Ren S, Lei T (2015) Comparison of highly transparent all-cellulose nanopaper prepared using sulfuric acid and TEMPO-mediated oxidation methods. Cellulose 22:1123–1133. https://doi.org/10.1007/s10570-015-0574-6

    Article  Google Scholar 

  83. Wakabayashi M, Fujisawa S, Saito T, Isogai A (2020) Nanocellulose film properties tunable by controlling degree of fibrillation of TEMPO-oxidized cellulose. Front Chem 8:1–9. https://doi.org/10.3389/fchem.2020.00037

    Article  Google Scholar 

  84. Khawas P, Das AJ, Deka SC (2016) Production of renewable cellulose nanopaper from culinary banana (Musa ABB) peel and its characterization. Ind Crops Prod 86:102–112. https://doi.org/10.1016/j.indcrop.2016.03.028

    Article  Google Scholar 

  85. Llanos JHR, Tadini CC (2018) Preparation and characterization of bio-nanocomposite films based on cassava starch or chitosan, reinforced with montmorillonite or bamboo nanofibers. Int J Biol Macromol 107:371–382. https://doi.org/10.1016/j.ijbiomac.2017.09.001

    Article  Google Scholar 

  86. Sehaqui H, Zhou Q, Ikkala O, Berglund LA (2011) Strong and tough cellulose nanopaper with high specific surface area and porosity. Biomacromol 12:3638–3644. https://doi.org/10.1021/bm2008907

    Article  Google Scholar 

  87. Zhu H, Zhu S, Jia Z et al (2015) Anomalous scaling law of strength and toughness of cellulose nanopaper. Proc Natl Acad Sci U S A 112:8971–8976. https://doi.org/10.1073/pnas.1502870112

    Article  Google Scholar 

  88. Syverud K, Stenius P (2009) Strength and barrier properties of MFC films. Cellulose 16:75–85. https://doi.org/10.1007/s10570-008-9244-2

    Article  Google Scholar 

  89. Nurul Atiqah MS, Gopakumar DA, Owolabi FAT et al (2019) Extraction of cellulose nanofibers via eco-friendly supercritical carbon dioxide treatment followed by mild acid hydrolysis and the fabrication of cellulose nanopapers. Polymers (Basel) 11:1813. https://doi.org/10.3390/polym11111813

    Article  Google Scholar 

  90. Shahi N, Min B, Sapkota B, Rangari VK (2020) Eco-friendly cellulose nanofiber extraction from sugarcane bagasse and film fabrication. Sustain 12:1–15. https://doi.org/10.3390/su12156015

    Article  Google Scholar 

  91. Mtibe A, Linganiso LZ, Mathew AP et al (2015) A comparative study on properties of micro and nanopapers produced from cellulose and cellulose nanofibres. Carbohydr Polym 118:1–8. https://doi.org/10.1016/j.carbpol.2014.10.007

    Article  Google Scholar 

  92. Lizundia E, Delgado-Aguilar M, Mutjé P et al (2016) Cu-coated cellulose nanopaper for green and low-cost electronics. Cellulose 23:1997–2010. https://doi.org/10.1007/s10570-016-0920-3

    Article  Google Scholar 

  93. Nogi M, Iwamoto S, Nakagaito AN, Yano H (2009) Optically transparent nanofiber paper. Adv Mater 21:1595–1598. https://doi.org/10.1002/adma.200803174

    Article  Google Scholar 

  94. Salajkova M, Valentini L, Zhou Q, Berglund LA (2013) Tough nanopaper structures based on cellulose nanofibers and carbon nanotubes. Compos Sci Technol 87:103–110. https://doi.org/10.1016/j.compscitech.2013.06.014

    Article  Google Scholar 

  95. Poiini P, Subramanian KS, Janavi GJ, Subramanian J (2020) Synthesis of nano-film from nanofibrillated cellulose of banana pseudostem (Musa spp.) to extend the shelf life of tomato. BioResources 15:2882–2905. https://doi.org/10.15376/biores.15.2.2882-2905

    Article  Google Scholar 

  96. Ra**ipriya M, Nagalakshmaiah M, Robert M, Elkoun S (2018) Industrial crops & products homogenous and transparent nanocellulosic fi lms from carrot. Ind Crop Prod 118:53–64. https://doi.org/10.1016/j.indcrop.2018.02.076

    Article  Google Scholar 

  97. Sakare P, Bharimalla AK, Dhakane-Lad J, Patil PG (2021) Development of greaseproof paper from banana pseudostem fiber for packaging of butter. J Nat Fibers 18:1974–1982. https://doi.org/10.1080/15440478.2019.1710652

    Article  Google Scholar 

  98. Chang H, Yao S, Kang X et al (2020) Flexible, transparent, and hazy cellulose nanopaper with efficient near-infrared luminescence fabricated by 2D lanthanide (Ln = Nd, Yb, or Er) metal-organic-framework-grafted oxidized cellulose nanofibrils. Inorg Chem 59:16611–16621. https://doi.org/10.1021/acs.inorgchem.0c02518

    Article  Google Scholar 

  99. de Coelho CC, S, Silva RBS, Carvalho CWP, et al (2020) Cellulose nanocrystals from grape pomace and their use for the development of starch-based nanocomposite films. Int J Biol Macromol 159:1048–1061. https://doi.org/10.1016/j.ijbiomac.2020.05.046

    Article  Google Scholar 

Download references

Acknowledgements

We express our gratitude to SAIF STIC, CUSAT, for the chemical analysis. Dr. Midhun Dominic C.D would like to thank Sacred Heart College (Autonomous), Thevara, for the Sacred Heart Research Initiative (SHRI) seed money (SHC/IQAC/SHRI/2022-23/03).

Author information

Authors and Affiliations

Authors

Contributions

Sameera Sankar: investigation, Neenu K. V.: writing—original draft, Jyotishkumar Parameswaranpillai: writing, reviewing and editing, T. G. Ajithkumar: formal analysis, Ankita Shelke: data curation, P. M. Sabura Begum: supervision, Bipinbal Parambath Kanoth: formal analysis, Tresa Sunitha George: data curation, Michael Badawi: resources, supervision, project administration, writing, reviewing and editing, Midhun Dominic C. D.: conceptualization, methodology, visualization, supervision, project administration, writing, reviewing and editing.

Corresponding authors

Correspondence to Michael Badawi or Midhun Dominic C. D..

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Declaration of generative AI and AI-assisted technologies in the writing process

During the preparation of this work, the corresponding author (Midhun Dominic C D) used ChatGpt in order to improve the language and readability. After using this tool/service, the author reviewed and edited the content as needed and takes full responsibility for the content of the publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sankar, S., K. V., N., Parameswaranpillai, J. et al. Green engineering of cellulose nanofibers and nanopapers from Wodyetia bifurcata fruits: a sustainable approach with emphasis on process optimization and tensile property assessment. Biomass Conv. Bioref. (2024). https://doi.org/10.1007/s13399-024-05751-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-024-05751-7

Keywords

Navigation