Log in

Lignin surface area influenced by biomass heterogeneity and pretreatment process

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Biomass conversion is challenged by the heterogeneity and lignin, a component that acts as a barrier to the enzymatic hydrolysis of polysaccharides. This study evaluated the effect of pretreatments on different fractions of sugarcane biomass lignin and cellulose exposure. Two different methods were used: dilute sulfuric acid (5%, 10%, and 20% w/w at 121 °C/30 min) and partial delignification with sodium chlorite (30% m/m at 70 °C/1 h) to reduce the exposed surface of lignin. The surface area of ​​lignin was obtained through the cationic dye Azure B, and cellulose access by enzymatic hydrolysis (15 FPU/g for 24 h—Cellic Cetec 2—Novozymes) was employed. Acid pretreatment was efficient in hemicellulose removal, and delignification removed lignin from all the biomasses fractions. Azure B dyes determined the surface area filled with lignin after dilute sulfuric acid pretreatment and partial delignification. The sample with the largest total surface area of lignin (52 m2/g of material) was the leaf pretreated with 5% sulfuric acid. The external fraction presented the largest specific surface area (240 m2/g) after partial delignification. These results indicate that reducing the lignin surface area enhances the glucose yield of enzymatic hydrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kumar AK, Sharma S (2017) Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour Bioprocess 4:1–19. https://doi.org/10.1186/S40643-017-0137-9

    Article  Google Scholar 

  2. Melati RB, Shimizu FL, Oliveira G et al (2019) Key factors affecting the recalcitrance and conversion process of biomass. Bioenergy Res 12:1–20. https://doi.org/10.1007/s12155-018-9941-0

    Article  Google Scholar 

  3. Brienzo M, Tyhoda L, Benjamin Y, Görgens J (2015) Relationship between physicochemical properties and enzymatic hydrolysis of sugarcane bagasse varieties for bioethanol production. New Biotechnol 32:253–262

    Article  Google Scholar 

  4. Schmatz AA, Tyhoda L, Brienzo M (2020) Sugarcane biomass conversion influenced by lignin. Biofuels Bioprod Biorefin 14:469–480. https://doi.org/10.1002/bbb.2070

    Article  Google Scholar 

  5. Candido JP, Claro EMT, de Paula CBC et al (2020) Detoxification of sugarcane bagasse hydrolysate with different adsorbents to improve the fermentative process. World J Microbiol Biotechnol 36(3):1–12. https://doi.org/10.1007/S11274-020-02820-7

    Article  Google Scholar 

  6. Forsan CF, de Freitas C, Masarin F, Brienzo M (2021) Xylooligosaccharide production from sugarcane bagasse and leaf using Aspergillus versicolor endoxylanase and diluted acid. Biomass Convers Biorefin 2021:1–16. https://doi.org/10.1007/S13399-021-01403-2

    Article  Google Scholar 

  7. Alves RC, Melati RB, Casagrande GM et al (2021) Sieving process selects sugarcane bagasse with lower recalcitrance to xylan solubilization. J Chem Technol Biotechnol 96:327–334. https://doi.org/10.1002/JCTB.6541

    Article  Google Scholar 

  8. Schmatz AA, Salazar-Bryam AM, Contiero J et al (2020) Pseudo-lignin content decreased with hemicellulose and lignin removal, improving cellulose accessibility, and enzymatic digestibility. BioEnergy Research 1(14):106–121. https://doi.org/10.1007/S12155-020-10187-8

    Article  Google Scholar 

  9. Shimizu FL, Monteiro PQ, Ghiraldi PHC et al (2018) Acid, alkali and peroxide pretreatments increase the cellulose accessibility and glucose yield of banana pseudostem. Ind Crops Prod 115:62–68. https://doi.org/10.1016/j.indcrop.2018.02.024

    Article  Google Scholar 

  10. Wallace J, Brienzo M, García-Aparicio MP, Görgens JF (2016) Lignin enrichment and enzyme deactivation as the root cause of enzymatic hydrolysis slowdown of steam pretreated sugarcane bagasse. New Biotechnol 33:361–371

    Article  Google Scholar 

  11. Fernandes ÉS, Bueno D, Pagnocca FC, Brienzo M (2020) Minor biomass particle size for an efficient cellulose accessibility and enzymatic hydrolysis. Chem Select 5:7627–7631. https://doi.org/10.1002/SLCT.202001008

    Article  Google Scholar 

  12. Freitas C, Carmona E, Brienzo M (2019) Xylooligosaccharides production process from lignocellulosic biomass and bioactive effects. Bioact Carbohydr Diet Fibre 18:352–363. https://doi.org/10.1016/J.BCDF.2019.100184

  13. Brienzo M, Fikizolo S, Benjamin Y et al (2017) Influence of pretreatment severity on structural changes, lignin content and enzymatic hydrolysis of sugarcane bagasse samples. Renew Energy 104:271–280. https://doi.org/10.1016/j.renene.2016.12.037

    Article  Google Scholar 

  14. Brienzo M, Ferreira S, Vicentim MP et al (2014) Comparison study on the biomass recalcitrance of different tissue fractions of sugarcane culm. Bioenergy Res 7:1454–1465

    Article  Google Scholar 

  15. Madadi M, Bakr MMA, Abdulkhani A et al (2022) Alleviating lignin repolymerization by carbocation scavenger for effective production of fermentable sugars from combined liquid hot water and green-liquor pretreated softwood biomass. Energy Convers Manage 251:114956. https://doi.org/10.1016/J.ENCONMAN.2021.114956

    Article  Google Scholar 

  16. Shimizu FL, de Azevedo GO, Coelho LF et al (2020) Minimum lignin and xylan removal to improve cellulose accessibility. Bioenerg Research 3(13):775–785. https://doi.org/10.1007/S12155-020-10120-Z

    Article  Google Scholar 

  17. Sipponen MH, Pihlajaniemi V, Pastinen O, Laakso S (2014) Reduction of surface area of lignin improves enzymatic hydrolysis of cellulose from hydrothermally pretreated wheat straw. RSC Adv 1:3. https://doi.org/10.1039/C4RA06926A

    Article  Google Scholar 

  18. Sipponen MH, Pihlajaniemi V, Littunen K et al (2014) Determination of surface-accessible acidic hydroxyls and surface area of lignin by cationic dye adsorption. Biores Technol 169:80–87. https://doi.org/10.1016/J.BIORTECH.2014.06.073

    Article  Google Scholar 

  19. Sant’Anna C, de Souza W, Brienzo M (2014) The influence of the heterogeneity, physicochemical and structural properties on the recalcitrance and conversion of sugarcane bagasse

  20. Siqueira G, Milagres AM, Carvalho W et al (2011) Topochemical distribution of lignin and hydroxycinnamic acids in sugar-cane cell walls and its correlation with the enzymatic hydrolysis of polysaccharides. Biotechnol Biofuels 1(4):1–9. https://doi.org/10.1186/1754-6834-4-7

    Article  Google Scholar 

  21. ABNT NBR 16550:2018 Sugarcane bagasse - chemical characterization. Brazilian National Standards Organization (2018) ABNT. https://www.abntcatalogo.com.br/norma.aspx?ID=395361. https://www.abntcatalogo.com.br/norma.aspx?ID=395361. Accessed 5 Oct 2021

  22. Brienzo M, Carvalho AFA, Figueiredo FC, Oliva Neto, P (2016) Sugarcane bagasse hemicellulose properties, extraction technologies and xylooligosaccharides production. In: Riley GL (Ed.). Food Waste. 978–1–63485–025–4.

  23. Santos C, Bueno D, Sant’Anna C, Brienzo M, (2020) High xylose yield from stem and external fraction of sugarcane biomass by diluted acid pretreatment. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-020-01088-z

    Article  Google Scholar 

  24. Santos CC, de Souza W, Sant Anna C, Brienzo M (2018) Elephant grass leaves have lower recalcitrance to acid pretreatment than stems, with higher potential for ethanol production. Ind Crops Prod 111:193–200. https://doi.org/10.1016/j.indcrop.2017.10.013

    Article  Google Scholar 

  25. Mesa L, Martínez Y, Barrio E, González E (2017) Desirability function for optimization of dilute acid pretreatment of sugarcane straw for ethanol production and preliminary economic analysis based in three fermentation configurations. Appl Energy 198:299–311. https://doi.org/10.1016/J.APENERGY.2017.03.018

    Article  Google Scholar 

  26. Evert RF (2006) Esau’s plant anatomy: meristems, cells, and tissues of the plant body: their structure, function, and development, 3rd edn. Jonh Wiley and Son, New Jersey, p 601 http://dx.doi.org/10.1002/0470047380 624

    Book  Google Scholar 

  27. Brienzo M, Abud Y, Ferreira S et al (2016) Characterization of anatomy, lignin distribution, and response to pretreatments of sugarcane culm node and internode. Ind Crops Prod 84:305–313. https://doi.org/10.1016/j.indcrop.2016.01.039

    Article  Google Scholar 

  28. Moodley P, Kana EBG (2015) Optimization of xylose and glucose production from sugarcane leaves (Saccharum officinarum) using hybrid pretreatment techniques and assessment for hydrogen generation at semi-pilot scale. Int J Hydrogen Energy 40:3859–3867. https://doi.org/10.1016/J.IJHYDENE.2015.01.087

    Article  Google Scholar 

  29. Junior CS, Milagres AMF, Ferraz A, Carvalho W (2013) The effects of lignin removal and drying on the porosity and enzymatic hydrolysis of sugarcane bagasse. Cellulose 6(20):3165–3177. https://doi.org/10.1007/S10570-013-0032-2

    Article  Google Scholar 

  30. Li H, Pu Y, Kumar R et al (2014) Investigation of lignin deposition on cellulose during hydrothermal pretreatment, its effect on cellulose hydrolysis, and underlying mechanisms. Biotechnol Bioeng 111:485–492. https://doi.org/10.1002/BIT.25108

    Article  Google Scholar 

  31. Hansen MAT, Jørgensen H, Laursen KH et al (2013) Structural and chemical analysis of process residue from biochemical conversion of wheat straw (Triticum aestivum L.) to ethanol. Biomass Bioenerg 56:572–581. https://doi.org/10.1016/J.BIOMBIOE.2013.06.007

    Article  Google Scholar 

  32. Sun Q, Foston M, Meng X et al (2014) Effect of lignin content on changes occurring in poplar cellulose ultrastructure during dilute acid pretreatment. Biotechnol Biofuels 1(7):1–14. https://doi.org/10.1186/S13068-014-0150-6

    Article  Google Scholar 

  33. Hatakeyama H, Hatakeyama T (2009) Lignin structure, properties, and applications. Adv Polym Sci 232:1–63. https://doi.org/10.1007/12_2009_12

    Article  Google Scholar 

  34. Hashmi M, Sun Q, Tao J et al (2017) Comparison of autohydrolysis and ionic liquid 1-butyl-3-methylimidazolium acetate pretreatment to enhance enzymatic hydrolysis of sugarcane bagasse. Biores Technol 224:714–720. https://doi.org/10.1016/J.BIORTECH.2016.10.089

    Article  Google Scholar 

  35. Yue Y, Han J, Han G et al (2015) Cellulose fibers isolated from energycane bagasse using alkaline and sodium chlorite treatments: structural, chemical and thermal properties. Ind Crops Prod 76:355–363. https://doi.org/10.1016/J.INDCROP.2015.07.006

    Article  Google Scholar 

  36. Pandeirada CO, Merkx DWH, Janssen HG et al (2021) TEMPO/NaClO2/NaOCl oxidation of arabinoxylans. Carbohyd Polym 259:117781. https://doi.org/10.1016/J.CARBPOL.2021.117781

    Article  Google Scholar 

Download references

Funding

This study was supported by the Brazilian Council for Research and Development (CNPq, process 401900/2016–9) and São Paulo Research Foundation (Fapesp, process 2017/22401–8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Brienzo.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Azevedo, G.O., Shimizu, F.L., Fontes, L.C. et al. Lignin surface area influenced by biomass heterogeneity and pretreatment process. Biomass Conv. Bioref. 14, 477–488 (2024). https://doi.org/10.1007/s13399-021-02264-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-02264-5

Keywords

Navigation