Log in

An existence principle for variational inequalities in Banach spaces

  • Original Paper
  • Published:
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas Aims and scope Submit manuscript

Abstract

The present article deals with existence and uniqueness results for a variational inequality posed on a real smooth Banach space. This allows us to generalize the known results of this type given in Hilbert spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alber, Y.: Generalized projection operators in Banach spaces: properties and applications. Funct. Diff. Equ. Proc. Israel Seminar Ariel 1, 1–24 (1994)

    MathSciNet  MATH  Google Scholar 

  2. Alber, Y., Reich, S., Shoikhet, D.: Iterative approximations of null points of uniformly accretive operators with estimates of convergence rate. Commun. Appl. Anal. 6, 89–104 (2002)

    MathSciNet  MATH  Google Scholar 

  3. Aoyama, K., Iiduca, H., Takahashi, W.: Weak convergence of an iterative sequence for accretive operators in Banach spaces. Fixed Point Theory Appl. 2006, 1–13 (2006)

    Article  MathSciNet  Google Scholar 

  4. Barbu, V.: Nonlinear semigroups and differential equations in Banach spaces. Noordhoff International Publishing, Leiden (1976)

    Book  Google Scholar 

  5. Browder, F.E.: Nonlinear map**s of nonexpansive and accretive type in Banach spaces. Bull. Am. Math. Soc. 7(3), 875–882 (1967)

    Article  MathSciNet  Google Scholar 

  6. Chugh, R., Rani, R.: Solution of a variational inequality problem for accretive operators in Banach spaces. IOSR J. Math. 12(4), 131–135 (2016)

    Article  Google Scholar 

  7. Cioranescu, I.: Geometry of Banach spaces, duality map**s and nonlinear problems. Kluwer Academic Publishers, Dordrecht (1990)

    Book  Google Scholar 

  8. Cojocaru, M.G.: Projected dynamical systems on Hilbert spaces. Ph.D. thesis, Queen’s University Canada (2002)

  9. Cojocaru, M.G., Daniele, P., Nagurney, A.: Projected dynamical systems and evolutionarry (time-dependent) variational inequalities via Hilbert spaces with applications. J. Optim. Theory Appl. 27(3), 1–15 (2005)

    MATH  Google Scholar 

  10. Deville, R.: Strong solutions of evolution equations governed by \(m\)-accretive operators and the Radon-Nikodým property Proc. Am. Math. Soc. 112(4), 1001–1008 (1991)

    MATH  Google Scholar 

  11. Fetter, H., Japón, M., Villada-Bedoya, J.: Reflexivity is equivalent to stability of the almost fixed point property. J. Math. Anal. Appl. 459, 789–796 (2018)

    Article  MathSciNet  Google Scholar 

  12. Garcia-Falset, J.: The asymptotic behavior of the solutions of the Cauchy problem generated by \(\phi \)-accretive operators. J. Math. Anal. Appl. 310, 594–608 (2005)

    Article  MathSciNet  Google Scholar 

  13. Garcia-Falset, J.: Strong convergence theorems for resolvents of accretive operators. Fixed point theory and its applications, pp. 87–94. Yokohama Publishers, Tokyo (2005)

    MATH  Google Scholar 

  14. Garcia-Falset, J., Muñiz-Pérez, O.: Projected dynamical systems on Hilbert spaces. J. Nonlinear Convex Anal. 15, 325–344 (2014)

    MathSciNet  MATH  Google Scholar 

  15. Garcia-Falset, J., Reich, S.: Integral solutions to a class of nonlocal evolution equations. Commun. Contemp. Math. 12(6), 1031–1054 (2010)

    Article  MathSciNet  Google Scholar 

  16. Giuffrè, S., Idone, G., Pia, S.: Some classes of projected dynamical systems in Banach spaces and variational inequalities. J. Global Optim. 40, 119–128 (2008)

    Article  MathSciNet  Google Scholar 

  17. Goebel, K., Kirk, W.A.: Topics in metric fixed point theory, vol. 28. Cambridge University Press, Cambridge (1990)

    Book  Google Scholar 

  18. Isac, G., Cojocaru, M.G.: The projection operator in a Hilbert space and its directional derivative. Consequences for the theory of projected dynamical systems. J. Funct. Spaces Appl. 2, 71–95 (2002)

    Article  MathSciNet  Google Scholar 

  19. Kamimura, S., Takahashi, W.: Strong convergence of a proximal-type algorithm in a Banach space. SIAM J. Optim. 13(3), 938–945 (2002)

    Article  MathSciNet  Google Scholar 

  20. Kato, T.: Nonlinear semigroups and evolution equations. J. Math. Soc. Japan 19, 508–520 (1967)

    Article  MathSciNet  Google Scholar 

  21. Kinderlehrer, D., Stampacchia, G.: An introduction to variational inequalities and their applications, Pure and Applied Mathematics, vol. 88. Academic Press, New York (1980)

    MATH  Google Scholar 

  22. Kirk, W.A., Sims, B. (eds.): Handbook of metric fixed point theory. Kluwer Academic Publishers, Dordrecht (2001)

    MATH  Google Scholar 

  23. Matous̆ková, E., Reich, S.: Reflexivity and approximate fixed points. Stud. Math. 159, 403–415 (2003)

    Article  MathSciNet  Google Scholar 

  24. Reich, S.: Extension problems for accretive sets in Banach spaces. J. Funct. Anal. 26, 378–395 (1977)

    Article  MathSciNet  Google Scholar 

  25. Reich, S.: Stong convergence theorems for resolvents of accretive operators in Banach spaces. J. Math. Anal. Appl. 75, 287–292 (1980)

    Article  MathSciNet  Google Scholar 

  26. Reich, S.: Review of [7]. Bull. Am. Math. Soc. 26, 367–370 (1992)

    Article  Google Scholar 

  27. Reich, S.: A weak convergence theorem for the alternating method with Bergman distances. Theory and applications of nonlinear operators, pp. 313–318. Marcel Dekker, New York (1996)

    MATH  Google Scholar 

  28. Saeidi, S., Kim, D.S.: Combination of the hybrid steepest-Descent method and viscosity approximation. J. Optim. Theory Appl. 160, 911–930 (2014)

    Article  MathSciNet  Google Scholar 

  29. Takahashi, W.: Nonlinear Funct. Anal. Yokohama Publishers, Tokyo (2000)

    Google Scholar 

  30. Torrejón, R., Reich, S.: Zeros of accretive operators. Comment. Math. Univ. Carolinae 21, 619–625 (1980)

    MathSciNet  MATH  Google Scholar 

  31. Wong, N.C., Sahu, D.R., Yao, J.C.: Solving variational inequalities involving nonexpansive type map**s. Nonlinear Anal. 69, 4732–4753 (2008)

    Article  MathSciNet  Google Scholar 

  32. Yao, Y., Noor, M.A., Noor, KhI, Liou, Y-Ch.: On an Iterative algorithm for variational inqualities in Banach spaces. Math. Commun. 16, 95–104 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author was partially supported by MTM 2015-65242-C2-1-P and by P08-FQM-03453. The second author was partially supported by MTM 2015-65242-C2-2-P. The authors would like to thanks the referee for his or her valuable recommendations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Garcia-Falset.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ariza-Ruiz, D., Garcia-Falset, J. & Villada-Bedoya, J. An existence principle for variational inequalities in Banach spaces. RACSAM 114, 19 (2020). https://doi.org/10.1007/s13398-019-00771-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13398-019-00771-9

Keywords

Mathematics Subject Classification

Navigation