Log in

Enhancement of Thermoelectric Properties in n-Type Cu0.01Bi2Te2.3+xSe0.7 (0 ≤ x ≤ 0.7) Compounds with Te-Excess

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

The fine control of antisite defects for Bi2Te3-based materials is necessary to improve their thermoelectric performance using the optimization of a carrier concentration. In this work, we attempted to tune the n-type carrier concentration by forming antisite TeBi defects under a Te-rich condition for Cu0.01Bi2Te2.3+xSe0.7 samples (0 ≤ x ≤ 0.7). The electrical resistivity decreases with increasing the amount of excess Te in the sample of Cu0.01Bi2Te2.3+xSe0.7, which is originated from the increase in the electron carrier concentration for the Te-excess samples. The highest power factor of 2.72 mW/m K2 is obtained at 323 K for Cu0.01Bi2Te2.4Se0.7, which is enhanced by ~ 20% compared to the x = 0 sample. The highest ZT of 0.92 is achieved at 473 K for Cu0.01Bi2Te2.4Se0.7, which is 11% higher than that of x = 0 sample (ZT = 0.83). We demonstrate that the optimization of n-type carrier concentration by forming antisite TeBi defects in n-type Bi2Te3-based materials should be effective for enhancing their thermoelectric performance.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Poudel, B., Hao, Q., Ma, Y., Lan, Y., Minnich, A., Yu, B., Yan, X., Wang, D., Muto, A., Vashaee, D., Chen, X., Liu, J., Dresselhaus, M.S., Chen, G., Ren, Z.: High-thermoelectric performance of nanostructured Bismuth antimony telluride bulk alloys. Science 320, 634 (2008)

    Article  Google Scholar 

  2. Liu, C.-J., Lai, H.-C., Liu, Y.-L., Chen, L.-R.: High thermoelectric figure-of-merit in p-type nanostructured (Bi, Sb)2Te3 fabricated via hydrothermal synthesis and evacuated-and-encapsulated sintering. J. Mater. Chem. 22, 4825 (2012)

    Article  Google Scholar 

  3. Kim, S.I., Lee, K.H., Mun, H.A., Kim, H.S., Hwang, S.W., Roh, J.W., Yang, D.J., Shin, W.H., Li, X.S., Lee, Y.H., Snyder, G.J., Kim, S.W.: Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science 348, 109 (2015)

    Article  Google Scholar 

  4. Zhang, Y., Day, T., Snedaker, M.L., Wang, H., Krämer, S., Birkel, C.S., Ji, X., Liu, D., Snyder, G.J., Stucky, G.D.: A mesoporous anisotropic n-type Bi2Te3 monolith with low thermal conductivity as an efficient thermoelectric material. Adv. Mater. 24, 5065 (2012)

    Article  Google Scholar 

  5. Hu, L., Zhu, T., Liu, X., Zhao, X.: Point defect engineering of high-performance bismuth-telluride-based thermoelectric materials. Adv. Func. Mater. 24, 5211 (2014)

    Article  Google Scholar 

  6. Liu, W.-S., Zhang, Q., Lan, Y., Chen, S., Yan, X., Zhang, Q., Wang, H., Wang, D., Chen, G., Ren, Z.: Thermoelectric property studies on Cu-doped n-type CuxBi2Te2.7Se0.3 nanocomposite. Adv. Energy Mater. 1, 577 (2011)

    Article  Google Scholar 

  7. Lin, C.-C., Ginting, D., Lydia, R., Lee, M.H., Rhyee, J.-S.: Thermoelectric properties and extremely low lattice thermal conductivity in p-type Bismuth Tellurides by Pb-do** and PbTe precipitation. J. Alloys Comp. 671, 538 (2016)

    Article  Google Scholar 

  8. Wang, S., Sun, Y., Yang, J., Duan, B., Wu, L., Zhang, W., Yang, J.: High thermoelectric performance in Te-free (Bi, Sb)2Se3 via structural transition induced band convergence and chemical bond softening. Energy Environ. Sci. 9, 3436 (2016)

    Article  Google Scholar 

  9. Wang, S., Li, H., Lu, R., Zheng, G., Tang, X.: Metal nanoparticle decorated n-type Bi2Te3-based materials with enhanced thermoelectric performances. Nanotechnology 24, 285702 (2013)

    Article  Google Scholar 

  10. Cuia, J.L., Maob, L.D., Yang, W., Xu, X.B., Chen, D.Y., **u, W.J.: Thermoelectric properties of Cu-doped n-type (Bi2Te3)0.9–(Bi2-xCuxSe3)0.1(x = 0–0.2) alloys. J. Solid State Chem. 180, 3583 (2007)

    Article  Google Scholar 

  11. Han, M.-K., Ahn, K., Kim, H.J., Rhyee, J.-S., Kim, S.-J.: Formation of Cu nanoparticles in layered Bi2Te3 and their effect on ZT enhancement. J. Mater. Chem. 21, 11365 (2011)

    Article  Google Scholar 

  12. Zhang, J.-M., Ming, W., Huang, Z., Liu, G.-B., Kou, X., Fan, Y., Wang, K.L., Yao, Y.: Stability, electronic, and magnetic properties of the magnetically doped topological insulators Bi2Se3, Bi2Te3, and Sb2Te3. Phys. Rev. B 88, 235131 (2013)

    Article  Google Scholar 

  13. Cho, Sunglae, Kim, Yunki, DiVenere, Antonio, Wong, George K., Ketterson, John B., Meyer, Jerry R.: Antisite defects of Bi2Te3 thin films. Appl. Phys. Lett. 75, 1401 (1999)

    Article  Google Scholar 

  14. Oh, M.W., Son, J.H., Kim, B.S., Park, S.D., Min, B.K., Lee, H.W.: Antisite defects in n-type Bi2(Te, Se)3: experimental and theoretical studies. J. Appl. Phys. 115, 133706 (2014)

    Article  Google Scholar 

  15. Snyder, G.J., Toberer, E.S.: Complex thermoelectric materials. Nat. Mater. 7, 105–114 (2008)

    Article  Google Scholar 

  16. Hashibon, Adham, Elaasser, Christian: First-principles density functional theory study of native point defects in Bi2Te3. Phys. Rev. B 84, 144117 (2011)

    Article  Google Scholar 

  17. West, D., Sun, Y.Y., Wang, H., Bang, J., Zhang, S.B.: Native defects in second-generation topological insulators: effect of spin-orbit interaction on Bi2Se3. Phys. Rev. B 86, 121201 (2012)

    Article  Google Scholar 

  18. Ginting, D., Lin, C.-C., Lydia, R., So, H.S., Lee, H., Hwang, J., Kim, W., Orabi, R.A.R.A., Rhyee, J.-S.: High thermoelectric performance in pseudo quaternary compounds of (PbTe)0.95−x(PbSe)x(PbS)0.05 by simultaneous band convergence and nano precipitation. Acta Mater. 131, 98 (2017)

    Article  Google Scholar 

  19. Orabi, R.A.R.A., Hwang, J., Lin, C.-C., Gautier, R., Fontaine, B., Kim, W., Rhyee, J.-S., Wee, D., Fornari, M.: Band degeneracy, low thermal conductivity, and high thermoelectric figure of merit in SnTe–CaTe alloys. Chem. Mater. 29, 612 (2016)

    Article  Google Scholar 

  20. Zhang, Y.: First-principles Debye–Callaway approach to lattice thermal conductivity. J. Materiomics 2, 237 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Nano Material Technology Development Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2011-0030147) and by the Materials and Components Technology Development Program of MOTIE/KEIT (10063286).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kyunghan Ahn or Jong-Soo Rhyee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Back, S.Y., Cho, H., Kim, J.H. et al. Enhancement of Thermoelectric Properties in n-Type Cu0.01Bi2Te2.3+xSe0.7 (0 ≤ x ≤ 0.7) Compounds with Te-Excess. Electron. Mater. Lett. 14, 139–145 (2018). https://doi.org/10.1007/s13391-018-0021-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-018-0021-6

Keywords

Navigation