Log in

Identities with generalized derivations on multilinear polynomials in prime rings

  • Published:
Afrika Matematika Aims and scope Submit manuscript

Abstract

Let R be a prime ring of characteristic not equal to 2, U the Utumi quotient ring of R, \(C=Z(U)\) the extended centroid of R, and \(f(x_1,\ldots ,x_n)\) be a multilinear polynomial over C, not central valued on R. Suppose that F and G are two nonzero generalized derivations of R such that \(F(f(x_1,\ldots ,x_n))G(f(x_1,\ldots ,x_n))+G(f(x_1,\ldots ,x_n))F(f(x_1,\ldots ,x_n))=0\) for all \(x_1,\ldots ,x_n\in R\). Then \(f(x_1,\ldots ,x_n)^2\) is central valued on R and one of the following holds:

  1. (1)

    there exist \(0\ne \lambda \in C\) and \(p\in U-C\), such that \(F(x)=\lambda x\) for all \(x\in R\) and \(G(x)=[p,x]\) for all \(x\in R\);

  2. (2)

    there exist nonzero \(a, b \in U\), such that \(F(x)=xa\) for all \(x\in R\) and \(G(x)=bx\) for all \(x\in R\) with \(ab=-ba\in C\);

  3. (3)

    there exist nonzero \(a, b \in U\), such that \(F(x)=ax\) for all \(x\in R\) and \(G(x)=xb\) for all \(x \in R\) with \(ab=-ba\in C\);

  4. (4)

    there exist \(0\ne \lambda \in C\) and \(a\in U-C\), such that \(F(x)=[a,x]\) for all \(x\in R\) and \(G(x)=\lambda x\) for all \(x\in R\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Argac, N., De Filippis, V.: Actions of generaliged derivations on multilinear polynomials in prime rings. Algebra Colloq. 18(Spec 1), 955-964 (2011)

  2. Bergen, J., Herstein, I.N., Kerr, J.W.: Lie ideals and derivations of prime rings. J. Algebra 71, 259-267 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brešar, M.: Centralizing map**s and derivations in prime rings. J. Algebra 156, 385-394 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chuang, C.L.: GPIs having coefficients in Utumi quotient rings. Proc. Am. Math. Soc. 103(3), 723-728 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chuang, C.L.: The additive subgroup generated by a polynomial. Isr. J. Math. 59(1), 98-106 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  6. De Filippis, V.: Product of two generalized derivations on polynomials in prime rings. Collect. Math. 61(3), 303-322 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Erickson, T.S., Martindale III, W.S., Osborn, J.M.: Prime nonassociative algebras. Pac. J. Math. 60, 49-63 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fošner, M., Vukman, J.: Identities with generalized derivations in prime rings. Meditter. J. Math. 9(4), 847-863 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jacobson, N.: Structer of Rings. Am. Math. Soc., Providence (1964)

    Google Scholar 

  10. Kharchenko, V.K.: Differential identity of prime rings. Algebra Log. 17, 155-168 (1978)

    Article  MATH  Google Scholar 

  11. Lanski, C.: An Engel condition with derivation. Proc. Am. Math. Soc. 118(3), 731-734 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lanski, C.: Differential identities, Lie ideals and Posner’s theorem. Pac. J. Math. 134, 275-297 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lee, T.K.: Generalized derivations of left faithful rings. Commun. Algebra 27(8), 4057-4073 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lee, T.K.: Derivations with invertible values on a multilinear polynomial. Proc. Am. Math. Soc. 119(4), 1077-1083 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lee, T.K.: Semiprime rings with differential identities. Bull. Inst. Math. Acad. Sin. 20(1), 27-38 (1992)

    MathSciNet  MATH  Google Scholar 

  16. Leron, U.: Nil and power central polynomials in rings. Trans. Am. Math. Soc. 202, 97-103 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  17. Martindale III, W.S.: Prime rings satisfying a generalized polynomial identity. J. Algebra 12, 576-584 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  18. Posner, E.C.: Derivations in prime rings. Proc. Am. Math. Soc. 8, 1093-1100 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  19. Rania, F., Scudo, G.: A quadratic differential identity with generalized derivations on multilinear polynomials in prime rings. Mediterr. J. Math. 11, 273-285 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wong, T.L.: Derivations cocentralizing multilinear polynomials. Taiwan. J. Math. 1(1), 31-37 (1997)

    MathSciNet  MATH  Google Scholar 

  21. Wong, T.L.: Derivations with power central values on multilinear polynomials. Algebra Colloq. 3(4), 369-378 (1996)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukhendu Kar.

Additional information

This work is supported by a grant from National Board for Higher Mathematics (NBHM), India. Grant No. is NBHM/R.P. 26/2012/Fresh/1745 dated 15.11.12.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhara, B., Kar, S. & Pradhan, K.G. Identities with generalized derivations on multilinear polynomials in prime rings. Afr. Mat. 27, 1347–1360 (2016). https://doi.org/10.1007/s13370-016-0415-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13370-016-0415-2

Keywords

Mathematics Subject Classification

Navigation