Log in

A State-of-the-Art Review on Cutting Tool Materials and Coatings in Enhancing the Tool Performance in Machining the Superior Nickel-Based Superalloys

  • Review Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Nickel-based superalloys have gained widespread use in various industries like aerospace, power generation, chemical processing, and marine engineering due to their exceptional mechanical properties. However, machining these superalloys poses significant challenges due to their hardness. To address these issues and improve machining performance, selecting suitable cutting tool materials and coatings is crucial. This state-of-the-art review aims to provide an in-depth understanding of the latest research on cutting tool materials and coatings in enhancing the tool performance in machining the superior nickel-based superalloys. It begins by examining the applications and current challenges associated with machining these alloys. Different types of cutting tool materials, including cemented carbides, ceramic-based tools, and super-hard materials like polycrystalline cubic boron nitride, are analyzed, with a particular focus on tool geometry and failure. The advantages, limitations, and specific applications of each tool material are highlighted. Additionally, the role of coatings in enhancing cutting tool performance is explored. Various coating types, including titanium nitride (TiN), titanium carbonitride (TiCN), and aluminum oxide (Al2O3), are evaluated based on their effectiveness in machining nickel-based superalloys. The review also covers aspects such as tool wear, cutting forces, the surface roughness of machined parts, heat generation, and temperature measurement techniques employed by researchers to assess cutting tool performance. It underscores the importance of tailoring the selection of cutting tool materials and coatings to specific machining conditions for optimal results. The review concludes by summarizing key findings and suggesting potential areas for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43

Similar content being viewed by others

Abbreviations

SEM:

Scanning electron microscope

PCBN:

Polycrystalline cubic boron nitride

BUE:

Built-up edge

PVD:

Physical vapor deposition

CVD:

Chemical vapor deposition

WC:

Tungsten carbide

MQL:

Minimum quantity lubrication

V c :

Cutting velocity

μm:

Micro-meter

m/min:

Meter/minute

f :

Feed speed

m:

Meter

RPM:

Revolutions/minute

N:

Newton

References

  1. Pollock, T.M.; Tin, S.: Nickel-based superalloys for advanced turbine engines: chemistry, microstructure and properties. J. Propul. Power 22(2), 361–374 (2006). https://doi.org/10.2514/1.18239

    Article  CAS  Google Scholar 

  2. Fedorova, E.; Monceau, D.; Oquab, D.; Khudonogov, S.: High-temperature oxidation of nickel-based alloys and estimation of the adhesion strength of resulting oxide layers. Prot. Met. Phys. Chem. Surf. 47, 347–353 (2011). https://doi.org/10.1134/S2070205111030051

    Article  CAS  Google Scholar 

  3. Rathi, N.; Kumar, P.; Kumar Khatkar, S.; Gupta, A.: Non-conventional machining of nickel based superalloys: a review. Mater. Today Proc. (2023). https://doi.org/10.1016/j.matpr.2023.02.176

    Article  Google Scholar 

  4. Peng, R.; Tong, J.; Tang, X.; Chen, R.; Jiang, S.: Crack propagation and wear estimation of ceramic tool in cutting inconel 718 based on discrete element method. Tribol. Int. 142, 105998 (2020). https://doi.org/10.1016/j.triboint.2019.105998

    Article  CAS  Google Scholar 

  5. Khan, S.A., et al.: Tool wear/life evaluation when finish turning Inconel 718 using PCBN tooling. Procedia CIRP 1, 283–288 (2012). https://doi.org/10.1016/j.procir.2012.04.051

    Article  Google Scholar 

  6. Zhao, J.; Liu, Z.; Wang, B.; Hu, J.; Wan, Y.: Tool coating effects on cutting temperature during metal cutting processes: comprehensive review and future research directions. Mech. Syst. Signal Process. 150, 107302 (2021). https://doi.org/10.1016/j.ymssp.2020.107302

    Article  Google Scholar 

  7. Ezugwu, E.O.; Wang, Z.M.; Machado, A.R.: The machinability of nickel-based alloys: a review. J. Mater. Process. Technol. 86(1), 1–16 (1999). https://doi.org/10.1016/S0924-0136(98)00314-8

    Article  Google Scholar 

  8. Ezugwu, E.O.; Bonney, J.; Yamane, Y.: An overview of the machinability of aeroengine alloys. J. Mater. Process. Technol. 134(2), 233–253 (2003). https://doi.org/10.1016/S0924-0136(02)01042-7

    Article  CAS  Google Scholar 

  9. Arunachalam, R.; Mannan, M.A.: Machinability of nickel-based high temperature alloys. Mach. Sci. Technol. 4(1), 127–168 (2000). https://doi.org/10.1080/10940340008945703

    Article  CAS  Google Scholar 

  10. Guo, Y.B.; Li, W.; Jawahir, I.S.: Surface integrity characterization and prediction in machining of hardened and difficult-to-machine alloys: A state-of-art research review and analysis. Machin. Sci. Technol. (2009). https://doi.org/10.1080/10910340903454922

    Article  Google Scholar 

  11. Akhtar, S.S.: A critical review on self-lubricating ceramic-composite cutting tools. Ceram. Int. 47(15), 20745–20767 (2021). https://doi.org/10.1016/j.ceramint.2021.04.094

    Article  CAS  Google Scholar 

  12. Liang, X.; Liu, Z.; Wang, B.: State-of-the-art of surface integrity induced by tool wear effects in machining process of titanium and nickel alloys: a review. Measurement 132, 150–181 (2019). https://doi.org/10.1016/j.measurement.2018.09.045

    Article  ADS  Google Scholar 

  13. Devillez, A.; Schneider, F.; Dominiak, S.; Dudzinski, D.; Larrouquere, D.: Cutting forces and wear in dry machining of Inconel 718 with coated carbide tools. Wear 262(7), 931–942 (2007). https://doi.org/10.1016/j.wear.2006.10.009

    Article  CAS  Google Scholar 

  14. Li, H.Z.; Zeng, H.; Chen, X.Q.: An experimental study of tool wear and cutting force variation in the end milling of Inconel 718 with coated carbide inserts. J. Mater. Process. Technol. 180(1), 296–304 (2006). https://doi.org/10.1016/j.jmatprotec.2006.07.009

    Article  CAS  Google Scholar 

  15. Arunachalam, R.M.; Mannan, M.A.; Spowage, A.C.: Surface integrity when machining age hardened Inconel 718 with coated carbide cutting tools. Int. J. Mach. Tools Manuf 44(14), 1481–1491 (2004). https://doi.org/10.1016/j.ijmachtools.2004.05.005

    Article  Google Scholar 

  16. Rahman, M.; Seah, W.K.H.; Teo, T.T.: The machinability of inconel 718. J. Mater. Process. Technol. 63(1), 199–204 (1997). https://doi.org/10.1016/S0924-0136(96)02624-6

    Article  Google Scholar 

  17. Cantero, J.L.; Díaz-Álvarez, J.; Miguélez, M.H.; Marín, N.C.: Analysis of tool wear patterns in finishing turning of Inconel 718. Wear 297(1), 885–894 (2013). https://doi.org/10.1016/j.wear.2012.11.004

    Article  CAS  Google Scholar 

  18. Bhatt, A.; Attia, H.; Vargas, R.; Thomson, V.: Wear mechanisms of WC coated and uncoated tools in finish turning of Inconel 718. Tribol. Int. 43(5), 1113–1121 (2010). https://doi.org/10.1016/j.triboint.2009.12.053

    Article  CAS  Google Scholar 

  19. Tsai, Y.C.; Hsieh, J.M.: An analysis of cutting-edge curves and machining performance in the Inconel 718 machining process. Int. J. Adv. Manuf. Technol. 25(3), 248–261 (2005). https://doi.org/10.1007/s00170-003-1869-6

    Article  Google Scholar 

  20. Richards, N.; Aspinwall, D.: Use of ceramic tools for machining nickel based alloys. Int. J. Mach. Tools Manuf 29(4), 575–588 (1989). https://doi.org/10.1016/0890-6955(89)90072-2

    Article  Google Scholar 

  21. Zhuang, K.; Zhu, D.; Zhang, X.; Ding, H.: Notch wear prediction model in turning of Inconel 718 with ceramic tools considering the influence of work hardened layer. Wear 313(1), 63–74 (2014). https://doi.org/10.1016/j.wear.2014.02.007

    Article  CAS  Google Scholar 

  22. El-Bestawi, M.A.; El-Wardany, T.I.; Yan, D.; Tan, M.: Performance of whisker-reinforced ceramic tools in milling nickel-based superalloy. CIRP Ann. 42(1), 99–102 (1993). https://doi.org/10.1016/S0007-8506(07)62401-9

    Article  Google Scholar 

  23. Narutaki, N.; Yamane, Y.; Hayashi, K.; Kitagawa, T.; Uehara, K.: High-speed machining of Inconel 718 with ceramic tools. CIRP Ann. 42(1), 103–106 (1993). https://doi.org/10.1016/S0007-8506(07)62402-0

    Article  Google Scholar 

  24. Sun, J.; Huang, S.; Ding, H.; Chen, W.: Cutting performance and wear mechanism of Sialon ceramic tools in high speed face milling GH4099. Ceram. Int. 46(2), 1621–1630 (2020). https://doi.org/10.1016/j.ceramint.2019.09.134

    Article  CAS  Google Scholar 

  25. Ezugwu, E.O.; Bonney, J.; Fadare, D.A.; Sales, W.F.: Machining of nickel-base, Inconel 718, alloy with ceramic tools under finishing conditions with various coolant supply pressures. J. Mater. Process. Technol. 162–163, 609–614 (2005). https://doi.org/10.1016/j.jmatprotec.2005.02.144

    Article  CAS  Google Scholar 

  26. Sivalingam, V., et al.: Wear behaviour of whisker-reinforced ceramic tools in the turning of Inconel 718 assisted by an atomized spray of solid lubricants. Tribol. Int. 148, 106235 (2020). https://doi.org/10.1016/j.triboint.2020.106235

    Article  CAS  Google Scholar 

  27. Focke, A.E.; Westermann, F.E.; Kemphaus, J.; Shih, W.T.; Hoch, M.: Wear of superhard materials when cutting super-alloys. Wear 46(1), 65–79 (1978). https://doi.org/10.1016/0043-1648(78)90111-4

    Article  CAS  Google Scholar 

  28. Ji, W.; Liu, X.-L.; Fan, M.-C.; You, H.-Y.; Li, H.-Y.: PCBN tool wear characteristic in cutting superalloy GH706. Mocaxue Xuebao/Tribology 35, 37–44 (2015). https://doi.org/10.16078/j.tribology.2015.01.006

    Article  CAS  Google Scholar 

  29. Ji, W.: Tool Design and Performance Evaluation of PCBN in Cutting Superalloys (2013)

  30. Lara de Leon, M.A.; Kolarik, J.; Byrtus, R.; Koziorek, J.; Zmij, P.; Martinek, R.: Tool condition monitoring methods applicable in the metalworking process. Arch. Comput. Methods Eng. (2023). https://doi.org/10.1007/s11831-023-09979-w

    Article  Google Scholar 

  31. Ross, N.S.; Sheeba, P.T.; Shibi, C.S.; Gupta, M.K.; Korkmaz, M.E.; Sharma, V.S.: A novel approach of tool condition monitoring in sustainable machining of Ni alloy with transfer learning models. J. Intell. Manuf. (2023). https://doi.org/10.1007/s10845-023-02074-8

    Article  Google Scholar 

  32. “A probabilistic-based approach to monitoring tool wear state and assessing its effect on workpiece quality in nickel-based alloys—ProQuest. Accessed: Dec. 15, 2023. https://www.proquest.com/docview/1873090395?pq-origsite=gscholar&fromopenview=true&sourcetype=Dissertations%20&%20Theses

  33. Sarat Babu, M.; Babu Rao, T.: Multi-sensor heterogeneous data-based online tool health monitoring in milling of IN718 superalloy using OGM (1, N) model and SVM. Measurement 199, 111501 (2022). https://doi.org/10.1016/j.measurement.2022.111501

    Article  Google Scholar 

  34. Chen, X.Q.; Li, H.Z.: Development of a tool wear observer model for online tool condition monitoring and control in machining nickel-based alloys. Int. J. Adv. Manuf. Technol. 45(7), 786–800 (2009). https://doi.org/10.1007/s00170-009-2003-1

    Article  Google Scholar 

  35. Bobzin, K.: High-performance coatings for cutting tools. CIRP J. Manuf. Sci. Technol. 18, 1–9 (2017). https://doi.org/10.1016/j.cirpj.2016.11.004

    Article  Google Scholar 

  36. “Ohring: Materials Science of Thin Films: Depositon... Google Scholar. Accessed: Mar. 17, 2023. https://scholar.google.com/scholar_lookup?title=The%20Materials%20Science%20of%20Thin%20Films&author=M.%20Ohring&publication_year=1992

  37. Petrov, I.; Barna, P.B.; Hultman, L.; Greene, J.E.: Microstructural evolution during film growth. J. Vac. Sci. Technol. A 21(5), S117–S128 (2003). https://doi.org/10.1116/1.1601610

    Article  CAS  Google Scholar 

  38. Baptista, A.; Silva, F.; Porteiro, J.; Míguez, J.; Pinto, G.: Sputtering physical vapour deposition (PVD) coatings: a critical review on process improvement and market trend demands. Coatings 8(11), 11 (2018). https://doi.org/10.3390/coatings8110402

    Article  CAS  Google Scholar 

  39. Koseki, S.; Inoue, K.; Usuki, H.: Damage of physical vapor deposition coatings of cutting tools during alloy 718 turning. Precis. Eng. 44, 41–54 (2016). https://doi.org/10.1016/j.precisioneng.2015.09.012

    Article  Google Scholar 

  40. Randhawa, H.; Johnson, P.C.: Technical note: a review of cathodic arc plasma deposition processes and their applications. Surf. Coat. Technol. 31(4), 303–318 (1987). https://doi.org/10.1016/0257-8972(87)90157-5

    Article  CAS  Google Scholar 

  41. Ng, E.-G.; Lee, D.W.; Sharman, A.R.C.; Dewes, R.C.; Aspinwall, D.K.; Vigneau, J.: High speed ball nose end milling of Inconel 718. CIRP Ann. 49(1), 41–46 (2000). https://doi.org/10.1016/S0007-8506(07)62892-3

    Article  Google Scholar 

  42. Kamata, Y.; Obikawa, T.: High speed MQL finish-turning of Inconel 718 with different coated tools. J. Mater. Process. Technol. 192–193, 281–286 (2007). https://doi.org/10.1016/j.jmatprotec.2007.04.052

    Article  CAS  Google Scholar 

  43. Yıldırım, Ç.V.; Kıvak, T.; Sarıkaya, M.; Şirin, Ş: Evaluation of tool wear, surface roughness/topography and chip morphology when machining of Ni-based alloy 625 under MQL, cryogenic cooling and CryoMQL. J. Market. Res. 9(2), 2079–2092 (2020). https://doi.org/10.1016/j.jmrt.2019.12.069

    Article  CAS  Google Scholar 

  44. Boyle, H.; Norgren, S.; Crawforth, P.; Christofidou, K.; Boing, D.; Jackson, M.: Insights in α-Al2O3 degradation in multilayer CVD coated carbide tools when turning IN718. Wear (2023). https://doi.org/10.1016/j.wear.2023.204786

    Article  Google Scholar 

  45. Delamination and Longitudinal Cracking in Multilayered Composite Nanostructured Coatings and Their Influence on Cutting Tool Wear Mechanism and Tool Life | IntechOpen. Accessed: Apr. 09, 2023. https://www.intechopen.com/chapters/58117

  46. You, Q.; **ong, J.; Guo, Z.; Huo, Y.; Liang, L.; Yang, L.: Study on coating performance of CVD coated cermet tools for 4340 steel cutting. Int. J. Refract Metal Hard Mater. 98, 105554 (2021). https://doi.org/10.1016/j.ijrmhm.2021.105554

    Article  CAS  Google Scholar 

  47. Thakur, A.; Gangopadhyay, S.; Maity, K.P.; Sahoo, S.K.: Evaluation on effectiveness of CVD and PVD coated tools during dry machining of Incoloy 825. Tribol. Trans. 59(6), 1048–1058 (2016). https://doi.org/10.1080/10402004.2015.1131350

    Article  CAS  Google Scholar 

  48. Kadirgama, K.; Abou-El-Hossein, K.A.; Noor, M.M.; Sharma, K.V.; Mohammad, B.: Tool life and wear mechanism when machining Hastelloy C-22HS. Wear 270(3), 258–268 (2011). https://doi.org/10.1016/j.wear.2010.10.067

    Article  CAS  Google Scholar 

  49. **aoqi, S.; Takahashi, Y.; Ihara, T.: Influence of built-up layer on the wear mechanisms of uncoated and coated carbide tools during dry cutting of Inconel 718. J. Jpn. Soc. Precis. Eng. 85(10), 856–865 (2019). https://doi.org/10.2493/jjspe.85.856

    Article  Google Scholar 

  50. Rakesh, M.; Datta, S.: Machining of Inconel 718 using coated WC tool: effects of cutting speed on chip morphology and mechanisms of tool wear. Arab. J. Sci. Eng. 45(2), 797–816 (2020). https://doi.org/10.1007/s13369-019-04171-4

    Article  CAS  Google Scholar 

  51. Zhang, Z.; **ang, D.; Zhang, Z.; Zhang, Y.; Zhao, B.: Study on tribology and cutting performance of boron doped diamond composite coated tool. Int. J. Refract Metal Hard Mater. 117, 106385 (2023). https://doi.org/10.1016/j.ijrmhm.2023.106385

    Article  CAS  Google Scholar 

  52. **ang, D.; Zhang, Z.; Chen, Y.; Hu, Y.; Lei, X.: Study of tribological properties of textured boron-doped diamond film under water lubrication. Surf. Interfaces 23, 100983 (2021). https://doi.org/10.1016/j.surfin.2021.100983

    Article  CAS  Google Scholar 

  53. Liu, C.H.; Sugihara, T.; Enomoto, T.: Interrupted cutting of Inconel 718 with AlTiSiN coated cemented carbide tool under high pressure coolant supply. Precis. Eng. 78, 124–133 (2022). https://doi.org/10.1016/j.precisioneng.2022.07.012

    Article  Google Scholar 

  54. Dongre, G., et al.: Effect of cooling technique and tool material on Inconel alloy. Mater. Today Proc. (2023). https://doi.org/10.1016/j.matpr.2023.01.270

    Article  Google Scholar 

  55. Makhesana, M.A.; Patel, K.M.; Krolczyk, G.M.; Danish, M.; Singla, A.K.; Khanna, N.: Influence of MoS2 and graphite-reinforced nanofluid-MQL on surface roughness, tool wear, cutting temperature and microhardness in machining of Inconel 625. CIRP J. Manuf. Sci. Technol. 41, 225–238 (2023). https://doi.org/10.1016/j.cirpj.2022.12.015

    Article  Google Scholar 

  56. Kasim, M.S., et al.: The effect of pulsating lubrication method on rake face cutting tool during end milling of inconel 718. Results Eng. 17, 100764 (2023). https://doi.org/10.1016/j.rineng.2022.100764

    Article  CAS  Google Scholar 

  57. Tu, L., et al.: Tool wear characteristics analysis of cBN cutting tools in high-speed turning of Inconel 718. Ceram. Int. 49(1), 635–658 (2023). https://doi.org/10.1016/j.ceramint.2022.09.034

    Article  CAS  Google Scholar 

  58. Chandra Behera, G.; Prasad Sahoo, S.; Kumari, S.; Datta, S.: Study on wear morphology of uncoated and MT-CVD TiCN-Al2O3 coated carbide inserts during dry machining of Inconel 825 superalloy. Mater. Today Proc. (2023). https://doi.org/10.1016/j.matpr.2023.02.013

    Article  Google Scholar 

  59. Goindi, G.S.; Sarkar, P.: Dry machining: a step towards sustainable machining—challenges and future directions. J. Clean. Prod. 165, 1557–1571 (2017). https://doi.org/10.1016/j.jclepro.2017.07.235

    Article  Google Scholar 

  60. Antonialli, A.Í.S.; Magri, A.; Diniz, A.E.: Tool life and tool wear in taper turning of a nickel-based superalloy. Int. J. Adv. Manuf. Technol. 87(5), 2023–2032 (2016). https://doi.org/10.1007/s00170-016-8568-6

    Article  Google Scholar 

  61. Senthil Kumar, A.; Raja Durai, A.; Sornakumar, T.: Wear behaviour of alumina based ceramic cutting tools on machining steels. Tribol. Int. 39(3), 191–197 (2006). https://doi.org/10.1016/j.triboint.2005.01.021

    Article  CAS  Google Scholar 

  62. Pandey, K.; Datta, S.: Performance of Si-doped TiAlxN supernitride coated carbide tool during dry machining of Inconel 718 superalloy. J. Manuf. Process. 84, 1258–1273 (2022). https://doi.org/10.1016/j.jmapro.2022.10.078

    Article  Google Scholar 

  63. Ribeiro da Silva, L.R.; Rodrigues Campos, Fd.A.; Sales, W.F.; Machado, A.R.: Evaluation of the tool wear in the turning process of INCONEL 718 using PCD tools. Procedia Manuf. 53, 276–285 (2021). https://doi.org/10.1016/j.promfg.2021.06.079

    Article  Google Scholar 

  64. Airao, J.; Khanna, N.; Nirala, C.K.: Tool wear reduction in machining Inconel 718 by using novel sustainable cryo-lubrication techniques. Tribol. Int. 175, 107813 (2022). https://doi.org/10.1016/j.triboint.2022.107813

    Article  CAS  Google Scholar 

  65. Fong, A.; Chen, X.; Li, H.: Overview of Material Processing Automation, pp. 1–18 (2002). https://doi.org/10.1142/9789812777775_0001

  66. Pawade, R.S.; Joshi, S.S.; Brahmankar, P.K.; Rahman, M.: An investigation of cutting forces and surface damage in high-speed turning of Inconel 718. J. Mater. Process. Technol. 192–193, 139–146 (2007). https://doi.org/10.1016/j.jmatprotec.2007.04.049

    Article  CAS  Google Scholar 

  67. Ng, E.-G.; Lee, D.W.; Sharman, A.R.C.; Dewes, R.C.; Aspinwall, D.K.; Vigneau, J.: High speed ball nose end milling of Inconel 718. CIRP Ann. Manuf. Technol. 49, 41–46 (2000). https://doi.org/10.1016/S0007-8506(07)62892-3

    Article  Google Scholar 

  68. Zhao, J.; Liu, Z.: Influences of coating thickness on cutting temperature for dry hard turning Inconel 718 with PVD TiAlN coated carbide tools in initial tool wear stage. J. Manuf. Process. 56, 1155–1165 (2020). https://doi.org/10.1016/j.jmapro.2020.06.010

    Article  Google Scholar 

  69. Behera, G.C.; Thrinadh, J.; Datta, S.: Influence of cutting insert (uncoated and coated carbide) on cutting force, tool-tip temperature, and chip morphology during dry machining of Inconel 825. Mater. Today Proc. 38, 2664–2670 (2021). https://doi.org/10.1016/j.matpr.2020.08.332

    Article  CAS  Google Scholar 

  70. Thakur, A.; Gangopadhyay, S.: Influence of tribological properties on the performance of uncoated, CVD and PVD coated tools in machining of Incoloy 825. Tribol. Int. 102, 198–212 (2016). https://doi.org/10.1016/j.triboint.2016.05.027

    Article  CAS  Google Scholar 

  71. Mehta, A., et al.: Influence of sustainable cutting environments on cutting forces, surface roughness and tool wear in turning of Inconel 718. Mater. Today Proc. 5(2, Part 2), 6746–6754 (2018). https://doi.org/10.1016/j.matpr.2017.11.333

    Article  Google Scholar 

  72. Sivaramakrishnaiah, M.; Nanda Kumar, P.; Ranga Janardana, G.: Online monitoring of metal cutting of Inconel600 with Al2O3 coated carbide tools. Mater. Today Proc. 4(2, Part A), 1550–1560 (2017). https://doi.org/10.1016/j.matpr.2017.01.178

    Article  Google Scholar 

  73. Parida, A.K.; Maity, K.: Comparison the machinability of Inconel 718, Inconel 625 and Monel 400 in hot turning operation. Eng. Sci. Technol. Int. J. 21(3), 364–370 (2018). https://doi.org/10.1016/j.jestch.2018.03.018

    Article  Google Scholar 

  74. Dhananchezian, M.: Influence of variation in cutting velocity on temperature, surface finish, chip form and insert after dry turning Inconel 600 with TiAlN carbide insert. Mater. Today Proc. 46, 8271–8274 (2021). https://doi.org/10.1016/j.matpr.2021.03.250

    Article  CAS  Google Scholar 

  75. Pujana, J.; del Campo, L.; Pérez-Sáez, R.B.; Tello, M.J.; Gallego, I.; Arrazola, P.J.: Radiation thermometry applied to temperature measurement in the cutting process. Meas. Sci. Technol. 18(11), 3409 (2007). https://doi.org/10.1088/0957-0233/18/11/022

    Article  ADS  CAS  Google Scholar 

  76. Rezende, B.A.; Magalhães, Fd.C.; Campos Rubio, J.C.: Study of the measurement and mathematical modelling of temperature in turning by means equivalent thermal conductivity. Measurement 152, 107275 (2020). https://doi.org/10.1016/j.measurement.2019.107275

    Article  Google Scholar 

  77. Zhao, J.; Liu, Z.; Wang, B.; Hua, Y.; Wang, Q.: Cutting temperature measurement using an improved two-color infrared thermometer in turning Inconel 718 with whisker-reinforced ceramic tools. Ceram. Int. 44(15), 19002–19007 (2018). https://doi.org/10.1016/j.ceramint.2018.07.142

    Article  CAS  Google Scholar 

  78. Armendia, M.; Garay, A.; Villar, A.; Davies, M.A.; Arrazola, P.J.: High bandwidth temperature measurement in interrupted cutting of difficult to machine materials. CIRP Ann. 59(1), 97–100 (2010). https://doi.org/10.1016/j.cirp.2010.03.059

    Article  Google Scholar 

  79. Aneiro, F.M.; Coelho, R.T.; Brandão, L.C.: Turning hardened steel using coated carbide at high cutting speeds. J. Braz. Soc. Mech. Sci. Eng. 30(2), 104–109 (2008). https://doi.org/10.1590/S1678-58782008000200002

    Article  Google Scholar 

  80. Zhao, J.; Liu, Z.; Shen, Q.; Wang, B.; Wang, Q.: Investigation of cutting temperature during turning Inconel 718 with (Ti, Al)N PVD coated cemented carbide tools. Materials 11(8), 8 (2018). https://doi.org/10.3390/ma11081281

    Article  CAS  Google Scholar 

  81. Gupta, V.; Pandey, P.M.; Mridha, A.R.; Gupta, R.K.: Effect of various parameters on the temperature distribution in conventional and diamond coated hollow tool bone drilling: a comparative study. Procedia Eng. 184, 90–98 (2017). https://doi.org/10.1016/j.proeng.2017.04.074

    Article  Google Scholar 

  82. Campidelli, A.F.V.; Lima, H.V.; Abrão, A.M.; Maia, A.A.T.: Development of a wireless system for milling temperature monitoring. Int. J. Adv. Manuf. Technol. 104(1), 1551–1560 (2019). https://doi.org/10.1007/s00170-019-04088-0

    Article  Google Scholar 

  83. Dhar, N.R.; Kamruzzaman, M.: Cutting temperature, tool wear, surface roughness and dimensional deviation in turning AISI-4037 steel under cryogenic condition. Int. J. Mach. Tools Manuf 47(5), 754–759 (2007). https://doi.org/10.1016/j.ijmachtools.2006.09.018

    Article  Google Scholar 

  84. Vieira, J.M.; Machado, A.R.; Ezugwu, E.O.: Performance of cutting fluids during face milling of steels. J. Mater. Process. Technol. 116(2), 244–251 (2001). https://doi.org/10.1016/S0924-0136(01)01010-X

    Article  CAS  Google Scholar 

  85. Li, T.; Shi, T.; Tang, Z.; Liao, G.; Han, J.; Duan, J.: Temperature monitoring of the tool-chip interface for PCBN tools using built-in thin-film thermocouples in turning of titanium alloy. J. Mater. Process. Technol. 275, 116376 (2020). https://doi.org/10.1016/j.jmatprotec.2019.116376

    Article  CAS  Google Scholar 

  86. Zhang, X.; Choi, H.; Datta, A.; Li, X.: Design, fabrication and characterization of metal embedded thin film thermocouples with various film thicknesses and junction sizes. J. Micromech. Microeng. 16(5), 900 (2006). https://doi.org/10.1088/0960-1317/16/5/004

    Article  ADS  CAS  Google Scholar 

  87. Yashwant Bhise, V.; Jogi, B.F.: Effect of cutting speed and feed on surface roughness in dry turning of Inconel X-750. Mater. Today Proc. 61, 587–592 (2022). https://doi.org/10.1016/j.matpr.2022.04.098

    Article  CAS  Google Scholar 

  88. Veerappan, G.; Pritima, D.; Parthsarathy, N.R.; Ramesh, B.; Jayasathyakawin, S.: Experimental investigation on machining behavior in dry turning of nickel based super alloy-Inconel 600 and analysis of surface integrity and tool wear in dry machining. Mater. Today Proc. 59, 1566–1570 (2022). https://doi.org/10.1016/j.matpr.2022.04.151

    Article  CAS  Google Scholar 

  89. Fleury, R.M.N.; Salvati, E.; Nowell, D.; Korsunsky, A.M.; Silva, F.; Tai, Y.H.: The effect of surface damage and residual stresses on the fatigue life of nickel superalloys at high temperature. Int. J. Fatigue 119, 34–42 (2019). https://doi.org/10.1016/j.ijfatigue.2018.09.024

    Article  CAS  Google Scholar 

  90. Schlauer, C.; Peng, R.; Odén, M.: Residual stresses in a nickel-based superalloy introduced by turning. Mater. Sci. Forum Mater. Sci. FORUM 404–407, 173–178 (2002). https://doi.org/10.4028/www.scientific.net/MSF.404-407.173

    Article  Google Scholar 

  91. Chen, Y.; Bunget, C.; Mears, L.; Kurfess, T.: Investigations in subsurface damage when machining nickel-based superalloys. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 40, 2234 (2015). https://doi.org/10.1177/0954405415577055

    Article  CAS  Google Scholar 

  92. Kwong, J.; Axinte, D.A.; Withers, P.J.: The sensitivity of Ni-based superalloy to hole making operations: influence of process parameters on subsurface damage and residual stress. J. Mater. Process. Technol. 209(8), 3968–3977 (2009). https://doi.org/10.1016/j.jmatprotec.2008.09.014

    Article  CAS  Google Scholar 

  93. Aramesh, M.; Montazeri, S.; Veldhuis, S.C.: A novel treatment for cutting tools for reducing the chip** and improving tool life during machining of Inconel 718. Wear 414–415, 79–88 (2018). https://doi.org/10.1016/j.wear.2018.08.002

    Article  CAS  Google Scholar 

  94. Lei, S.; Devarajan, S.; Chang, Z.: A study of micropool lubricated cutting tool in machining of mild steel. J. Mater. Process. Technol. 209(3), 1612–1620 (2009). https://doi.org/10.1016/j.jmatprotec.2008.04.024

    Article  CAS  Google Scholar 

  95. Enomoto, T.; Sugihara, T.: Improving anti-adhesive properties of cutting tool surfaces by nano-/micro-textures. CIRP Ann. 59(1), 597–600 (2010). https://doi.org/10.1016/j.cirp.2010.03.130

    Article  Google Scholar 

  96. Liu, X.-L.; Shi, J.-K.; Ji, W.; Wang, L.-H.: Experimental evaluation on grinding texture on flank face in chamfer milling of stainless steel. Chin. J. Mech. Eng. 31(1), 71 (2018). https://doi.org/10.1186/s10033-018-0271-0

    Article  CAS  Google Scholar 

  97. Morris, B.: The components of the wired spanning forest are recurrent. Probab. Theory Relat. Fields 125(2), 259–265 (2003). https://doi.org/10.1007/s00440-002-0236-0

    Article  MathSciNet  Google Scholar 

  98. Tamil Alagan, N.; Zeman, P.; Hoier, P.; Beno, T.; Klement, U.: Investigation of micro-textured cutting tools used for face turning of alloy 718 with high-pressure cooling. J. Manuf. Process. 37, 606–616 (2019). https://doi.org/10.1016/j.jmapro.2018.12.023

    Article  Google Scholar 

Download references

Acknowledgements

Authors thank King Fahd University of Petroleum and Minerals for providing financial and technical support.

Funding

This work is funded by the KFUPM Internal Funded Grant (DSR) Project Code: IN171028.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed A. D. Sarhan.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seenath, A.A., Sarhan, A.A.D. A State-of-the-Art Review on Cutting Tool Materials and Coatings in Enhancing the Tool Performance in Machining the Superior Nickel-Based Superalloys. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-024-08745-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-024-08745-9

Keywords

Navigation