Log in

Effect of Pulsed TIG Welding Parameters on the Microstructural Evolution and Mechanical Properties of Dissimilar AA6061-T6 and AA7075-T6 Weldments

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

AA6061-T6 and AA7075-T6 aluminium metals are broadly used in structural and aerospace sectors due to their exceptional features, but fusion welding causes thermal cracks, high residual stresses, and coarse grains, weakening joints. To solve these issues, pulsed tungsten inert gas (P-TIG) welding was used to improve the grain structure and mechanical features of the dissimilar joints. In this investigation, four peak currents (110, 120, 165, and 175 A) and four pulse frequencies (4, 8, 12, and 16 Hz) with constant base current, pulse on time, and argon flow rate were utilized, and the microstructural features were investigated and correlated with the joint’s mechanical properties. The welded sample P4 developed a void-free joint with the maximum tensile strength (~ 201 MPa), elongation (~ 17%), microhardness (~ 101 HV), and compressive residual stresses (~ 76 MPa) compared to other welded samples. Microstructural evolutions revealed that, as the pulse current and frequencies increased, the grain refinement and grain boundary transformations across the FZ became more pronounced, and the segregation of alloying elements was lower. Specifically, for welded samples P4, the average grain size decreased to 21 μm, and the grain boundary transformations reached 73.32%. Moreover, the orientation density value of the welded joints was much lower than that of the base metals, suggesting that the texture was greatly reduced after welding, which further reduced the anisotropy of the mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Nie, F.; Dong, H.; Chen, S.; Li, P.; Wang, L.; Zhao, Z., et al.: Microstructure and mechanical properties of pulse MIG welded 6061/A356 aluminum alloy dissimilar butt joints. J. Mater. Sci. Technol. 34, 551–560 (2018). https://doi.org/10.1016/j.jmst.2016.11.004

    Article  Google Scholar 

  2. Maisonnette, D.; Suery, M.; Nelias, D.; Chaudet, P.; Epicier, T.: Effects of heat treatments on the microstructure and mechanical properties of a 6061 aluminium alloy. Mater. Sci. Eng. A 528, 2718–2724 (2011). https://doi.org/10.1016/j.msea.2010.12.011

    Article  Google Scholar 

  3. Liu, C.; Northwood, D.O.; Bhole, S.D.: Tensile fracture behavior in CO2 laser beam welds of 7075–T6 aluminum alloy. Mater. Des. 25, 573–577 (2004). https://doi.org/10.1016/j.matdes.2004.02.017

    Article  Google Scholar 

  4. Senthil Kumar, T.; Balasubramanian, V.; Babu, S.; Sanavullah, M.Y.: Effect of pulsed current GTA welding parameters on the fusion zone microstructure of AA 6061 aluminium alloy. Met. Mater. Int. 13, 345–351 (2007)

    Article  Google Scholar 

  5. Liu, J.; Zhu, H.; Li, Z.; Cui, W.; Shi, Y.: Effect of ultrasonic power on porosity, microstructure, mechanical properties of the aluminum alloy joint by ultrasonic assisted laser-MIG hybrid welding. Opt. Laser Technol. 119, 105619 (2019). https://doi.org/10.1016/j.optlastec.2019.105619

    Article  Google Scholar 

  6. Yuan, T.; Li, Y.; Ren, X.; Jiang, X.; Zhao, P.: Effect of pulse current on grain refinement in Ti6Al4V welds during pulsed plasma arc welding. J. Mater. Eng. Perform. (2023). https://doi.org/10.1007/s11665-023-08543-8

    Article  Google Scholar 

  7. Janaki Ram, G.D.; Mitra, T.K.; Shankar, V.; Sundaresan, S.: Microstructural refinement through inoculation of type 7020 Al–Zn–Mg alloy welds and its effect on hot cracking and tensile properties. J. Mater. Process. Technol. 142, 174–181 (2003). https://doi.org/10.1016/S0924-0136(03)00574-0

    Article  Google Scholar 

  8. Babu, N.K.; Talari, M.K.; Pan, D.; Sun, Z.; Wei, J.; Sivaprasad, K.: Microstructural characterization and grain refinement of AA6082 gas tungsten arc welds by scandium modified fillers. Mater. Chem. Phys. 137, 543–551 (2012). https://doi.org/10.1016/j.matchemphys.2012.09.056

    Article  Google Scholar 

  9. Watanabe, T.; Shiroki, M.; Yanagisawa, A.; Sasaki, T.: Improvement of mechanical properties of ferritic stainless steel weld metal by ultrasonic vibration. J. Mater. Process. Technol. 210, 1646–1651 (2010). https://doi.org/10.1016/j.jmatprotec.2010.05.015

    Article  Google Scholar 

  10. Dong, H.; Yang, L.; Dong, C.; Kou, S.: Improving arc joining of Al to steel and Al to stainless steel. Mater. Sci. Eng. A 534, 424–435 (2012). https://doi.org/10.1016/j.msea.2011.11.090

    Article  Google Scholar 

  11. Zhang, L.; Jiang, H.; He, J.; Zhao, J.: Kinetic behaviour of TiB2 particles in Al melt and their effect on grain refinement of aluminium alloys. Trans. Nonferrous Met. Soc. China 30, 2035–2044 (2020). https://doi.org/10.1016/S1003-6326(20)65358-4

    Article  Google Scholar 

  12. **, L.; Gu, D.; Guo, S.; Wang, R.; Ding, K.; Prashanth, K.G.: Grain refinement in laser manufactured Al-based composites with TiB2 ceramic. J. Mater. Res. Technol. 9, 2611–2622 (2020). https://doi.org/10.1016/j.jmrt.2020.04.059

    Article  Google Scholar 

  13. Gu, J.; Ding, J.; Williams, S.W.; Gu, H.; Bai, J.; Zhai, Y., et al.: The strengthening effect of inter-layer cold working and post-deposition heat treatment on the additively manufactured Al–6.3Cu alloy. Mater. Sci. Eng. A 651, 18–26 (2016). https://doi.org/10.1016/j.msea.2015.10.101

    Article  Google Scholar 

  14. Yuan, T.; Luo, Z.; Kou, S.: Grain refining of magnesium welds by arc oscillation. Acta Mater. 116, 166–176 (2016). https://doi.org/10.1016/j.actamat.2016.06.036

    Article  Google Scholar 

  15. Yuan, T.; Kou, S.; Luo, Z.: Grain refining by ultrasonic stirring of the weld pool. Acta Mater. 106, 144–154 (2016). https://doi.org/10.1016/j.actamat.2016.01.016

    Article  Google Scholar 

  16. Senthil Kumar, T.; Balasubramanian, V.; Sanavullah, M.Y.: Influences of pulsed current tungsten inert gas welding parameters on the tensile properties of AA 6061 aluminium alloy. Mater. Des. 28, 2080–2092 (2007). https://doi.org/10.1016/j.matdes.2006.05.027

    Article  Google Scholar 

  17. Chen, K.; Zhan, L.; Xu, Y.; Liu, Y.: Effect of pulsed current density on creep-aging behavior and microstructure of AA7150 aluminum alloy. J. Mater. Res. Technol. 9, 15433–15441 (2020). https://doi.org/10.1016/j.jmrt.2020.10.100

    Article  Google Scholar 

  18. Liu, J.; Staron, P.; Riekehr, S.; Stark, A.; Schell, N.; Huber, N., et al.: In situ study of phase transformations during laser-beam welding of a TiAl alloy for grain refinement and mechanical property optimization. Intermetallics (Barking) 62, 27–35 (2015). https://doi.org/10.1016/j.intermet.2015.03.003

    Article  Google Scholar 

  19. Benakis, M.; Costanzo, D.; Patran, A.: Current mode effects on weld bead geometry and heat affected zone in pulsed wire arc additive manufacturing of Ti-6-4 and Inconel 718. J. Manuf. Process. 60, 61–74 (2020). https://doi.org/10.1016/j.jmapro.2020.10.018

    Article  Google Scholar 

  20. Kumar, A.; Sundarrajan, S.: Effect of welding parameters on mechanical properties and optimization of pulsed TIG welding of Al–Mg–Si alloy. Int. J. Adv. Manuf. Technol. 42, 118–125 (2009). https://doi.org/10.1007/s00170-008-1572-8

    Article  Google Scholar 

  21. Kishore Babu, N.; Ganesh Sundara Raman, S.; Mythili, R.; Saroja, S.: Correlation of microstructure with mechanical properties of TIG weldments of Ti–6Al–4V made with and without current pulsing. Mater Charact 58, 581–587 (2007). https://doi.org/10.1016/j.matchar.2006.07.001

    Article  Google Scholar 

  22. Yang, M.; Zheng, H.; Qi, B.; Yang, Z.: Effect of arc behavior on Ti-6Al-4V welds during high frequency pulsed arc welding. J. Mater. Process. Technol. 243, 9–15 (2017). https://doi.org/10.1016/j.jmatprotec.2016.12.003

    Article  Google Scholar 

  23. Yelamasetti, B.; Rajyalakshmi, G.: Residual stress analysis, mechanical and metallurgical properties of dissimilar weldments of Monel 400 and AISI 316. Int. J. Mater. Res. 111, 880–893 (2020). https://doi.org/10.3139/146.111961

    Article  Google Scholar 

  24. Dev, S.; Ramkumar, K.D.; Arivazhagan, N.; Rajendran, R.: Investigations on the microstructure and mechanical properties of dissimilar welds of inconel 718 and sulphur rich martensitic stainless steel, AISI 416. J. Manuf. Process. 32, 685–698 (2018). https://doi.org/10.1016/j.jmapro.2018.03.035

    Article  Google Scholar 

  25. Devendranath Ramkumar, K.; Joshi, V.; Pandit, S.; Agrawal, M.; Kumar, O.S.; Periwal, S., et al.: Investigations on the microstructure and mechanical properties of multi-pass pulsed current gas tungsten arc weldments of Monel 400 and Hastelloy C276. Mater. Des. 64, 775–782 (2014). https://doi.org/10.1016/j.matdes.2014.08.055

    Article  Google Scholar 

  26. Reddy, G.M.; Gokhale, A.A.; Rao, K.P.: Optimisation of pulse frequency in pulsed current gas tungsten arc welding of aluminium–lithium alloy sheets. Mater. Sci. Technol. 14, 61–66 (1998). https://doi.org/10.1179/mst.1998.14.1.61

    Article  Google Scholar 

  27. Yelamasetti, B.; Ramana, G.V.; Manikyam, S.; Vardhan, T.V.: Thermal field and residual stress analyses of similar and dissimilar weldments joined by constant and pulsed current TIG welding techniques. Adv. Mater. Process. Technol. 8, 1889–1904 (2022). https://doi.org/10.1080/2374068X.2021.1959114

    Article  Google Scholar 

  28. Ishak, M.; MohdNoordin, N.F.; Ahmad Shah, L.H.: Feasibility study on joining dissimilar aluminum alloys AA6061 and AA7075 by tungsten inert gas (TIG). J Teknol (2015). https://doi.org/10.11113/jt.v75.5177

    Article  Google Scholar 

  29. Mehdi, H.; Mishra, R.S.: Microstructure and mechanical characterization of tungsten inert gas-welded joint of AA6061 and AA7075 by friction stir processing. Proc. Inst. Mech. Eng. Part L J. Mater. Design Appl. 235, 2531–2546 (2021). https://doi.org/10.1177/14644207211007882

    Article  Google Scholar 

  30. Yamada, R.; Ishizawa, S.; Itoh, G.; Kurumada, A.; Nakai, M.: Effects of environment on fatigue crack growth behavior of 2000 and 7000 series aluminum alloys. In: Recent Advances in Structural Integrity Analysis—Proceedings of the International Congress (APCF/SIF-2014), pp. 123–6. Elsevier (2014). https://doi.org/10.1533/9780081002254.123

  31. Madadi, F.; Ashrafizadeh, F.; Shamanian, M.: Optimization of pulsed TIG cladding process of stellite alloy on carbon steel using RSM. J. Alloys Compd. 510, 71–77 (2012). https://doi.org/10.1016/j.jallcom.2011.08.073

    Article  Google Scholar 

  32. Balram, Y.; Vishu Vardhan, T.; Sridhar Babu, B.; Venkat Ramana, G.; Preethi, Ch.: Thermal stress analysis of AISI 316 stainless steels weldments in TIG and pulse TIG welding processes. Mater. Today Proc. 19, 182–187 (2019). https://doi.org/10.1016/j.matpr.2019.06.695

    Article  Google Scholar 

  33. Giridharan, P.K.; Murugan, N.: Optimization of pulsed GTA welding process parameters for the welding of AISI 304L stainless steel sheets. Int. J. Adv. Manuf. Technol. 40, 478–489 (2009). https://doi.org/10.1007/s00170-008-1373-0

    Article  Google Scholar 

  34. Lin, J.; Ma, N.; Lei, Y.; Murakawa, H.: Measurement of residual stress in arc welded lap joints by cosα X-ray diffraction method. J. Mater. Process. Technol. 243, 387–394 (2017). https://doi.org/10.1016/j.jmatprotec.2016.12.021

    Article  Google Scholar 

  35. Bin Reyaz, M.S.; Sinha, A.N.: Analysis of mechanical properties and optimization of tungsten inert gas welding parameters on dissimilar AA6061-T6 and AA7075-T6 by a response surface methodology-based desirability function approach. Eng. Optim. (2023). https://doi.org/10.1080/0305215X.2023.2230133

    Article  Google Scholar 

  36. Chen, C.; Sun, G.; Du, W.; Li, Y.; Fan, C.; Zhang, H.: Influence of heat input on the appearance, microstructure and microhardness of pulsed gas metal arc welded Al alloy weldment. J. Mater. Res. Technol. 21, 121–130 (2022). https://doi.org/10.1016/j.jmrt.2022.09.028

    Article  Google Scholar 

  37. Koli Y.; Yuvaraj N.; Aravindan S.; Vipin: CMT Joining of AA6061-T6 and AA6082-T6 and examining mechanical properties and microstructural characterization. Trans. Indian Inst. Met. 74, 313–29 (2021). https://doi.org/10.1007/s12666-020-02134-0

  38. Qin, Q.; Zhao, H.; Li, J.; Zhang, Y.; Zhang, B.; Su, X.: Microstructures and mechanical properties of TIG welded Al-Mg2Si alloy joints. J. Manuf. Process. 56, 941–949 (2020). https://doi.org/10.1016/j.jmapro.2020.05.058

    Article  Google Scholar 

  39. Moradi, M.M.; Jamshidi Aval, H.; Jamaati, R.; Amirkhanlou, S.; Ji, S.: Microstructure and texture evolution of friction stir welded dissimilar aluminum alloys: AA2024 and AA6061. J. Manuf. Process. 32, 1–10 (2018). https://doi.org/10.1016/j.jmapro.2018.01.016

    Article  Google Scholar 

  40. Song, G.; Wang, Z.; Liu, Z.; Liu, L.: Effect of partial rolling on the microstructure and mechanical properties of laser-TIG hybrid welded joints of 7075–T6 aluminum alloy. Int. J. Adv. Manuf. Technol. 121, 589–599 (2022). https://doi.org/10.1007/s00170-022-09287-w

    Article  Google Scholar 

  41. Temmar, M.; Hadji, M.; Sahraoui, T.: Effect of post-weld aging treatment on mechanical properties of Tungsten Inert Gas welded low thickness 7075 aluminium alloy joints. Mater. Des. 32, 3532–3536 (2011). https://doi.org/10.1016/j.matdes.2011.02.011

    Article  Google Scholar 

  42. Hakem, M.; Lebaili, S.; Mathieu, S.; Miroud, D.; Lebaili, A.; Cheniti, B.: Effect of microstructure and precipitation phenomena on the mechanical behavior of AA6061-T6 aluminum alloy weld. Int. J. Adv. Manuf. Technol. 102, 2907–2918 (2019). https://doi.org/10.1007/s00170-019-03401-1

    Article  Google Scholar 

  43. Çömez, N.; Durmus, H.: Cold metal transfer welding of AA6061 to AA7075: Mechanical properties and corrosion. J. Eng. Mater. Technol. Trans. ASME (2019). https://doi.org/10.1115/1.4042863

    Article  Google Scholar 

  44. Eftekhar, A.H.; Sadrossadat, S.M.; Reihanian, M.: Effect of heat input on microstructure and mechanical properties of TIG-welded semisolid cast AXE622 Mg alloy. Mater Charact (2022). https://doi.org/10.1016/j.matchar.2021.111692

    Article  Google Scholar 

  45. Li, S.; Dong, H.; Wang, X.; Liu, Z.; Tan, Z.; Shangguan, L., et al.: Effect of repair welding on microstructure and mechanical properties of 7N01 aluminum alloy MIG welded joint. J. Manuf. Process. 54, 80–88 (2020). https://doi.org/10.1016/j.jmapro.2020.03.009

    Article  Google Scholar 

  46. Verma, M.; Saha, P.: Effect of micro-grooves featured tool and their depths on dissimilar micro-friction stir welding (μFSW) of aluminum alloys: a study of process responses and weld characteristics. Mater Charact (2023). https://doi.org/10.1016/j.matchar.2022.112614

    Article  Google Scholar 

  47. Zhao, H.; Yu, M.; Jiang, Z.; Zhou, L.; Song, X.: Interfacial microstructure and mechanical properties of Al/Ti dissimilar joints fabricated via friction stir welding. J. Alloys Compd. 789, 139–149 (2019). https://doi.org/10.1016/j.jallcom.2019.03.043

    Article  Google Scholar 

  48. Zhao, H.; Pan, Q.; Qin, Q.; Wu, Y.; Su, X.: Effect of the processing parameters of friction stir processing on the microstructure and mechanical properties of 6063 aluminum alloy. Mater. Sci. Eng. A 751, 70–79 (2019). https://doi.org/10.1016/j.msea.2019.02.064

    Article  Google Scholar 

  49. Yan, S.; Ma, C.; Chen, H.: Modifying microstructures and mechanical properties of laser-arc welded joints of dissimilar advanced aluminum alloys. Mater Charact 164, 110331 (2020). https://doi.org/10.1016/j.matchar.2020.110331

    Article  Google Scholar 

  50. Bin Reyaz, M.S.; Sinha, A.N.: An experimental investigation on mechanical characteristics and wear behaviour of TIG welded dissimilar aluminum alloys. J. Adhes. Sci. Technol. (2023). https://doi.org/10.1080/01694243.2023.2251782

    Article  Google Scholar 

  51. Bahemmat, P.; Haghpanahi, M.; Besharati, M.K.; Ahsanizadeh, S.; Rezaei, H.: Study on mechanical, micro-, and macrostructural characteristics of dissimilar friction stir welding of AA6061-T6 and AA7075-T6. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 224, 1854–1865 (2010). https://doi.org/10.1243/09544054JEM1959

    Article  Google Scholar 

  52. Peng, D.; Shen, J.; Tang, Q.; Wu, C.P.; Zhou, Y.B.: Effects of aging treatment and heat input on the microstructures and mechanical properties of TIG-welded 6061–T6 alloy joints. Int. J. Miner. Metall. Mater. 20, 259–265 (2013). https://doi.org/10.1007/s12613-013-0721-8

    Article  Google Scholar 

  53. Do Lee, C.: Effect of grain size on the tensile properties of magnesium alloy. Mater. Sci. Eng. A 459, 355–360 (2007). https://doi.org/10.1016/j.msea.2007.01.008

    Article  Google Scholar 

  54. Murali, N.; Li, X.: TIG Welding of Dissimilar High-Strength Aluminum Alloys 6061 and 7075 with Nano-Treated Filler Wires. Minerals, Metals and Materials Series, Vol. 6, p. 316–322. Springer Science and Business Media Deutschland GmbH, Berlin (2021) https://doi.org/10.1007/978-3-030-65396-5_47

    Book  Google Scholar 

  55. Deore, H.A.; Mishra, J.; Rao, A.G.; Mehtani, H.; Hiwarkar, V.D.: Effect of filler material and post process ageing treatment on microstructure, mechanical properties and wear behaviour of friction stir processed AA 7075 surface composites. Surf. Coat. Technol. 374, 52–64 (2019). https://doi.org/10.1016/j.surfcoat.2019.05.048

    Article  Google Scholar 

  56. Tariq, M.; Khan, I.; Hussain, G.; Farooq, U.: Microstructure and micro-hardness analysis of friction stir welded bi-layered laminated aluminum sheets. Int. J. Lightweight Mater. Manuf. 2, 123–130 (2019). https://doi.org/10.1016/j.ijlmm.2019.04.010

    Article  Google Scholar 

  57. Alam, M.P.; Sinha, A.N.: Effect of heat assisting backing plate in friction stir welding of high strength Al-Li alloy. Energy Sources Part A Recover. Util. Environ. Effects 44, 2851–2862 (2022). https://doi.org/10.1080/15567036.2019.1651793

    Article  Google Scholar 

  58. Roy, J.G.; Yuvaraj, N.; Vipin.: Effect of welding parameters on mechanical properties of cold metal transfer welded thin AISI 304 stainless-steel sheets. Trans. Indian Inst. Met. 74, 2397–408 (2021). https://doi.org/10.1007/s12666-021-02326-2

  59. Mehdi, H.; Mishra, R.S.: Influence of friction stir processing on weld temperature distribution and mechanical properties of TIG-welded joint of AA6061 and AA7075. Trans. Indian Inst. Met. 73, 1773–1788 (2020). https://doi.org/10.1007/s12666-020-01994-w

    Article  Google Scholar 

  60. Mehdi, H.; Mishra, R.S.: Effect of friction stir processing on mechanical properties and wear resistance of tungsten inert gas welded joint of dissimilar aluminum alloys. J. Mater. Eng. Perform. 30, 1926–1937 (2021). https://doi.org/10.1007/s11665-021-05549-y

    Article  Google Scholar 

  61. Mehdi, B.; Badji, R.; Ji, V.; Allili, B.; Bradai, D.; Deschaux-Beaume, F., et al.: Microstructure and residual stresses in Ti-6Al-4V alloy pulsed and unpulsed TIG welds. J. Mater. Process. Technol. 231, 441–448 (2016). https://doi.org/10.1016/j.jmatprotec.2016.01.018

    Article  Google Scholar 

  62. Bector, K.; Singh, M.; Pandey, D.; Butola, R.; Singari, R.M.: Study of residual stresses in multi-pass friction stir processed surface composites. Adv. Mater. Process. Technol. (2021). https://doi.org/10.1080/2374068X.2021.1939983

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the OIM & Texture Lab, Indian Institute of Technology, Bombay, for facilitating the EBSD characterization and the Precision Manufacturing Lab, Delhi Technological University, Delhi, for assisting with the residual stress characterization of the welded samples.

Funding

This research has not been supported by any financial resources.

Author information

Authors and Affiliations

Authors

Contributions

MSBR worked in investigation, conceptualization, methodology, data curation, carried out the experiments, and writing—original draft. ANS helped in reviewing and editing and supervision. HM contributed to reviewing and editing. QM helped in formal analysis and visualization.

Corresponding author

Correspondence to Md Saquib Bin Reyaz.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reyaz, M.S.B., Sinha, A.N., Mehdi, H. et al. Effect of Pulsed TIG Welding Parameters on the Microstructural Evolution and Mechanical Properties of Dissimilar AA6061-T6 and AA7075-T6 Weldments. Arab J Sci Eng 49, 10891–10911 (2024). https://doi.org/10.1007/s13369-023-08563-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08563-5

Keywords

Navigation