Log in

A Parametric Study on Damage Assessment of RC Buildings Subjected to Blast Loading

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstracts

In this study, the dynamic responses and damage to buildings subjected to explosions were investigated. A total of 72 blasting scenarios were considered by utilizing the TNT explosive weights, concrete strengths, and openings in the facades of buildings. The blast analyses are performed using six TNT weights, six concrete strengths, and two opening rates in facades. First, ANSYS Workbench was employed to generate numerical models comprising the structural and non-structural components. The models were then transferred to ANSYS Autodyn to simulate the explosion effects. The peak pressures, displacements, released/absorbed-total energies, and damages obtained from the structural elements and walls were comparatively investigated. The results clearly show that the peak pressures and displacements obtained from the structural elements and walls were significantly affected by the TNT explosive weights, concrete strengths, and openings in the infill walls. A significant portion of the energy released from the explosion was absorbed by the air volume, and the energy absorbed by the concrete and brick was negligible. This situation shows that blast-induced damages are strongly influenced by TNT explosive weights compared to the concrete strengths and openings in facades. The explosion analyses and results obtained indicate that the explosive weights, concrete strengths, infill walls, and openings play major roles in the dynamic responses and damage of buildings. Additionally, explosion-proof buildings can be constructed using the described parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. Altunlu, K.: Safety assessment of r/c columns against explosive attacks by vehicle or human from exterior, master’s thesis. Middle East Technical University, Ankara (2008)

    Google Scholar 

  2. Brünig, M.; Michalski, A.: Numerical analysis of damage and failure behavior of concrete. Int. J. Damage Mech. 29(4), 570–590 (2019). https://doi.org/10.1177/1056789519866005

    Article  Google Scholar 

  3. Wu, L.; Huang, D.; Xu, Y.; Wang, L.: A rate-dependent dynamic damage model in peridynamics for concrete under impact loading. Int. J. Damage Mech. 29(7), 1035–1058 (2020). https://doi.org/10.1177/1056789519901162

    Article  Google Scholar 

  4. Boduroğlu, M.H.: İstanbul’n yapı stoğu ve sorunları. İkinci İstanbul ve Deprem Sempozyumu, Istanbul (2000)

    Google Scholar 

  5. Strasser, F.O.; Bommer, J.J.; Şeşetyan, K.; Erdik, M.; Çağnan, Z.; Irizarry, J.; Goula, X.; Lucantoni, A.; Sabetta, F.; Bal, I.E.; Crowley, H.; Lindholm, C.: A comparative study of european earthquake loss estimation tools for a scenario in Istanbul. J. Earthq. Eng. 12(S2), 246–256 (2008). https://doi.org/10.1080/13632460802014188

    Article  Google Scholar 

  6. Yalciner, H.: Structural response to blast loading: the effects of corrosion on reinforced concrete structures. Shock. Vib. 2014, 1–7 (2014). https://doi.org/10.1155/2014/529892

    Article  Google Scholar 

  7. Hamra, L.: Development and analysis of low-order models of frame structures under blast loads, doctoral dissertation. Université de Liège, Liège (2016)

    Google Scholar 

  8. **, L.; Zhang, R.; Du, X.; Dou, G.: Structural behavior of the steel fiber reinforced concrete beam under multiple impact loadings: an experimental investigation. Int. J. Damage Mech. 29(3), 503–526 (2019). https://doi.org/10.1177/1056789519862331

    Article  Google Scholar 

  9. FEMA 427: Primer for design of commercial buildings to mitigate terrorist attacks. FEMA-Federal Emergency Management Agency, Washington, DC (2003)

    Google Scholar 

  10. Brode, H.L.: Numerical solutions of spherical blast waves. J. Appl. Phys. 26(6), 766–775 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  11. Henrych, J.; Major, R.: The dynamics of explosion and its use. Elsevier, Amsterdam (1979)

    Google Scholar 

  12. Kingery, C.N.; Bulmash, G.: Air blast parameters from TNT spherical air burst and hemispherical burst, technical report ARBRL-TR-02555: AD-B082 713. US Army Ballistic Research Laboratory Aberdeen Proving Ground, Maryland (1984)

    Google Scholar 

  13. Kinney, G.F.; Graham, K.J.: Explosive shocks in air. Springer Publishing Company, Berlin (1985)

    Book  Google Scholar 

  14. Mills, C.A.; The design of concrete structure to resist explosions and weapon effects. In: Proceedings of the 1st international conference on concrete for hazard protections. Edinburgh, 27–30 Sept 1987, pp. 61–73

  15. Davidson, J.S.; Porter, J.R.; Dinan, R.J.; Hammons, M.I.; Connell, J.D.: Explosive testing of polymer retrofit masonry walls. J. Perform. Constr. Facil. 18(2), 100–106 (2004). https://doi.org/10.1061/(asce)0887-3828(2004)18:2(100)

    Article  Google Scholar 

  16. Zapata, B.J.; Weggel, D.C.: Collapse Study of an unreinforced masonry bearing wall building subjected to internal blast loading. J. Perform. Constr. Facil. 22(2), 92–100 (2008). https://doi.org/10.1061/(asce)0887-3828(2008)22:2(92)

    Article  Google Scholar 

  17. Shi, Y.; **ong, W.; Li, Z.-X.; Xu, Q.: Experimental studies on the local damage and fragments of unreinforced masonry walls under close-in explosions. Int. J. Impact Eng 90, 122–131 (2016). https://doi.org/10.1016/j.ijimpeng.2015.12.002

    Article  Google Scholar 

  18. Li, Z.; Chen, L.; Fang, Q.; Hao, H.; Zhang, Y.; **ang, H.; Chen, W.; Yang, S.; Bao, Q.: Experimental and numerical study of unreinforced clay brick masonry walls subjected to vented gas explosions. Int. J. Impact Eng 104, 107–126 (2017). https://doi.org/10.1016/j.ijimpeng.2017.02.002

    Article  Google Scholar 

  19. Alsayed, S.H.; Elsanadedy, H.M.; Al-Zaheri, Z.M.; Al-Salloum, Y.A.; Abbas, H.: Blast response of GFRP-strengthened infill masonry walls. Constr. Build. Mater. 115, 438–451 (2016). https://doi.org/10.1016/j.conbuildmat.2016.04.053

    Article  Google Scholar 

  20. Keys, R.A.; Clubley, S.K.: Establishing a predictive method for blast induced masonry debris distribution using experimental and numerical methods. Eng. Fail. Anal. 82, 82–91 (2017). https://doi.org/10.1016/j.engfailanal.2017.07.017

    Article  Google Scholar 

  21. Chen, Y.; Wang, B.; Zhang, B.; Zheng, Q.; Zhou, J.; **, F.; Fan, H.: Polyurea coating for foamed concrete panel: an efficient way to resist explosion. Def. Technol. 16(1), 136–149 (2020). https://doi.org/10.1016/j.dt.2019.06.010

    Article  Google Scholar 

  22. Codina, R.; Ambrosini, D.; de Borbón, F.: Experimental and numerical study of a RC member under a close-in blast loading. Eng. Struct. 127, 145–158 (2016). https://doi.org/10.1016/j.engstruct.2016.08.035

    Article  Google Scholar 

  23. Dua, A.; Braimah, A.; Kumar, M.: Experimental and numerical investigation of rectangular reinforced concrete columns under contact explosion effects. Eng. Struct. 205, 109891 (2020). https://doi.org/10.1016/j.engstruct.2019.109891

    Article  Google Scholar 

  24. Liu, L.; Zong, Z.; Ma, Z.J.; Qian, H.; Gan, L.: Experimental study on behavior and failure mode of psrc bridge pier under close-in blast loading. J. Bridg. Eng. 26(2), 04020124 (2021). https://doi.org/10.1061/(asce)be.1943-5592.0001662

    Article  Google Scholar 

  25. Heggelund, S.; Brekken, K.; Ingier, P.; Christensen, S.O.: Global response of a three-story building exposed to blast loading. Multidiscip. Digit. Publ. Inst. Proc. 2(8), 386 (2018). https://doi.org/10.3390/ICEM18-05211

    Article  Google Scholar 

  26. Norén-Cosgriff, K.M.; Ramstad, N.; Neby, A.; Madshus, C.: Building damage due to vibration from rock blasting. Soil Dyn. Earthq. Eng. 138, 106331 (2020). https://doi.org/10.1016/j.soildyn.2020.106331

    Article  Google Scholar 

  27. Luccioni, B.M.; Ambrosini, R.D.; Danesi, R.F.: Analysis of building collapse under blast loads. Eng. Struct. 26(1), 63–71 (2004). https://doi.org/10.1016/j.engstruct.2003.08.011

    Article  Google Scholar 

  28. Wu, C.; Hao, H.; Lu, Y.; Sun, S.: Numerical simulation of structural responses on a sand layer to blast induced ground excitations. Comput. Struct. 82(9–10), 799–814 (2004). https://doi.org/10.1016/j.compstruc.2004.01.003

    Article  Google Scholar 

  29. Wu, C.; Hao, H.; Lu, Y.: Dynamic response and damage analysis of masonry structures and masonry infilled RC frames to blast ground motion. Eng. Struct. 27(3), 323–333 (2005). https://doi.org/10.1016/j.engstruct.2004.10.004

    Article  Google Scholar 

  30. Jayasooriya, R.; Thambiratnam, D.P.; Perera, N.J.; Kosse, V.: Blast and residual capacity analysis of reinforced concrete framed buildings. Eng. Struct. 33(12), 3483–3495 (2011). https://doi.org/10.1016/j.engstruct.2011.07.011

    Article  Google Scholar 

  31. Kelliher, D.; Sutton-Swaby, K.: Stochastic representation of blast load damage in a reinforced concrete building. Struct. Saf. 34(1), 407–417 (2012). https://doi.org/10.1016/j.strusafe.2011.08.001

    Article  Google Scholar 

  32. Abdollahzadeh, G.; Faghihmaleki, H.: Seismic-explosion risk-based robustness index of structures. Int. J. Damage Mech. 26(4), 523–540 (2017). https://doi.org/10.1177/1056789516651919

    Article  Google Scholar 

  33. Syed, Z.I.; Mohamed, O.A.; Murad, K.; Kewalramani, M.: Performance of earthquake-resistant rcc frame structures under blast explosions. Procedia Engineering 180, 82–90 (2017)

    Article  Google Scholar 

  34. Sevim, B.; Toy, A.T.: Blasting response of a two-storey rc building under different charge weight of tnt explosives. Iran. J. Sci. Technol. Trans. Civ. Eng. 44(2), 565–577 (2019)

    Article  Google Scholar 

  35. Andreou, M.; Kotsoglou, A.; Pantazopoulou, S.: Modelling blast effects on a reinforced concrete bridge. Adv. Civ. Eng. 2016, 1–11 (2016). https://doi.org/10.1155/2016/4167329

    Article  Google Scholar 

  36. Hu, Z.-J.; Wu, L.; Zhang, Y.-F.; Sun, L.: Dynamic responses of concrete piers under close-in blast loading. Int. J. Damage Mech. 25(8), 1235–1254 (2016). https://doi.org/10.1177/1056789516653245

    Article  Google Scholar 

  37. Hacıefendioğlu, K.: Stochastic dynamic response of short-span highway bridges to spatial variation of blasting ground vibration. Appl. Math. Comput. 292, 194–209 (2017). https://doi.org/10.1016/j.amc.2016.07.039

    Article  MATH  Google Scholar 

  38. Hu, Z.; Fang, J.Q.; Sun, L.Z.: Blast effect zones and damage mechanisms of concrete bridges under above-deck car-bomb attacks. Int. J. Damage Mech. 27(8), 1156–1172 (2017). https://doi.org/10.1177/1056789517708827

    Article  Google Scholar 

  39. Zhu, Z.; Li, Y.; He, S.; Ma, C.: Analysis of the failure mechanism of multi-beam steel–concrete composite bridge under car explosion. Adv. Struct. Eng. 23(3), 538–548 (2020). https://doi.org/10.1177/1369433219876185

    Article  Google Scholar 

  40. Chen, J.; Liu, X.; Xu, Q.: Numerical simulation analysis of damage mode of concrete gravity dam under close-in explosion. KSCE J. Civ. Eng. 21(1), 397–407 (2017). https://doi.org/10.1007/s12205-016-1082-4

    Article  Google Scholar 

  41. Sevim, B.; Toy, A.T.: Structural response of concrete gravity dams under blast loads. Adv. Concr. Constr. 9(5), 503–510 (2020). https://doi.org/10.12989/ACC.2020.9.5.503

    Article  Google Scholar 

  42. Yusof, M.A.; Rosdi, R.N.; Nor, N.M.; Ismail, A.; Yahya, M.A.; Peng, N.C.: Simulation of reinforced concrete blast wall subjected to air blast loading. J. Asian Sci. Res. 4(9), 522–533 (2014)

    Google Scholar 

  43. Toy, A.T.; Sevim, B.: Numerically and empirically determination of blasting response of a RC retaining wall under TNT explosive. Adv. Concr. Constr. 5(5), 493–512 (2017). https://doi.org/10.12989/acc.2017.5.5.493

    Article  Google Scholar 

  44. Nam, J.-W.; Kim, H.-J.; Kim, S.-B.; Jay Kim, J.-H.; Byun, K.H.: Analytical study of finite element models for FRP retrofitted concrete structure under blast loads. Int. J. Damage Mech. 18(5), 461–490 (2009). https://doi.org/10.1177/1056789507088339

    Article  Google Scholar 

  45. Shi, Y.; Stewart, M.G.: Spatial reliability analysis of explosive blast load damage to reinforced concrete columns. Struct. Saf. 53, 13–25 (2015)

    Article  Google Scholar 

  46. Codina, R.; Ambrosini, D.; de Borbon, F.: Alternatives to prevent progressive collapse protecting reinforced concrete columns subjected to near field blast loading. Procedia Eng. 199, 2445–2450 (2017). https://doi.org/10.1016/j.proeng.2017.09.380

    Article  Google Scholar 

  47. Nouri, G.; Yoosefpoor Avandari, A.; Barmah, J.: Evaluation of rc beam-column retrofitting methods against near-field blast loading. J. Perform. Constr. Facil. 35(2), 04020150 (2021). https://doi.org/10.1061/(asce)cf.1943-5509.0001562

    Article  Google Scholar 

  48. Workbench, A.N.S.Y.S.: Swanson analyses system. Ansys Inc, Canonsburg (2016)

    Google Scholar 

  49. Autodyn, A.N.S.Y.S.: Swanson analyses system. Ansys Inc, Canonsburg (2016)

    Google Scholar 

  50. FEMA 426: Reference manual to mitigate potential terrorists attacks against buildings risk management series. Federal-Emergency Management Agency, Washington, DC (2003)

    Google Scholar 

  51. TS500: Requirements for design and construction of reinforced concrete structures. Institute of Turkish Standard, Ankara (2000)

    Google Scholar 

  52. TEC: Turkish earthquake code. Disaster and Emergency Management Presidency, Ankara (2018)

    Google Scholar 

  53. Riedel, W.; Thoma, K.; Hiermaier, S.; Schmolinske, E. (1999). Penetration of reinforced concrete by BETA-B-500 numerical analysis using a new macroscopic concrete model for hydrocodes. In: Proceedings of the 9th international symposium on the effects of munitions with structures, vol. 315. Berlin-Strausberg

  54. Herrmann, W.: Constitutive equation for the dynamic compaction of ductile porous materials. J. Appl. Phys. 40(6), 2490–2499 (1969)

    Article  Google Scholar 

  55. Johnson, G. R.; Cook, W. H. (1983). A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Proceedings of the 7th international symposium on ballistics, pp. 541–547

  56. UFC 3–340-02: Unified facilities criteria: structures to resist the effects of accidental explosions. Department of Defense, Washington (2008)

    Google Scholar 

  57. Nourzadeh, D.D.; Humar, J.; Braimah, A.: Comparison of response of building structures to blast loading and seismic excitations. Procedia Eng. 210, 320–325 (2017)

    Article  Google Scholar 

  58. Toy, A.T.; Sevim, B.: Structural response of multi-story building subjected to blast load. J. Struct. Eng. Appl. Mech. 5(1), 13–21 (2022). https://doi.org/10.31462/jseam.2022.01013021

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet Can Altunişik.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altunişik, A.C., Önalan, F. & Sunca, F. A Parametric Study on Damage Assessment of RC Buildings Subjected to Blast Loading. Arab J Sci Eng 48, 5115–5137 (2023). https://doi.org/10.1007/s13369-022-07331-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07331-1

Keywords

Navigation