Log in

A Numerical and Experimental Performance Assessment of a Single-Phase Supersonic Ejector

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper proposes an integrated numerical–experimental study of a fixed geometry ejector designed for a cooling system activated by waste heat. Ejector operation is analyzed for cases of imposed input and output sets of conditions in terms of pressures and/or temperatures. Experiments with constant primary conditions and secondary temperature were conducted in a range of outlet pressures for model validation purposes. A parametric analysis was then performed for constant pressure and temperature conditions at both inputs (primary and secondary) by varying the outlet pressure. For each test case, performance in terms of entrainment ratio, local parameters distributions (P, M, τ) and the internal flow structure were analyzed in an attempt to establish a link between the external constraints, the flow structure, the operation stability and performance within the range of cooling applications. The ranges of operating conditions investigated were Pp = 4.77 bar, Tp = 83 °C and, respectively, 1.7 ≤ Pc ≤ 2.4 bar, 12.5 °C ≤ Te ≤ 16.5 °C, at saturation. Experimental entrainment ratio, ERexp in the range of 0.12–0.22 was numerically simulated within ± 10%. It was shown that both the ejector operation and the internal flow configurations were sensitive to backpressure. More particularly, an optimal backpressure exists to which corresponds an on-design conditions with maximized entrainment ratio and a shock-wave train located at the end of the mixing chamber. A backpressure increase sets the ejector in off design. This mode of operation is characterized by a shift of the shock train toward the inlets, a disturbance of the flow configuration, a diminution of the entrainment ratio and a deterioration of the operation stability. On the other hand, a backpressure decrease does not affect the ejector stability of operation at its maximum entrainment ratio for the prevailing conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

\(CFD\) :

Computational fluid dynamics

\(COP\) :

Coefficient of performance

\(ER\) :

Entrainment ratio

\(ERC\) :

Ejector refrigeration cycle

\(ERS\) :

Ejector refrigeration system

\(EXP\) :

Experimental

\(PR\) :

Pressure ratio

\(D\) :

Diameter [mm]

\(L\) :

Length [mm]

\({m}_{1}\) :

Generator mass flow rate [kg.s1]

\({m}_{2}\) :

Evaporator mass flow rate [kg.s1]

\(Ma\) :

Mach number

V:

Velocity [m.s1]

\(NXP\) :

Primary nozzle exit position [mm]

\(\mathrm{P}\) :

Pressure [bar]

\({p}_{C}\) :

Condensing pressure [bar]

\({p}_{\mathrm{E}}\) :

Evaporating pressure [bar]

\({p}_{\mathrm{p}}\) :

Primary pressure [bar]

\(Qe\) :

Cooling load [kW]

\(Qg\) :

Generator thermal energy [kW]

\(s\) :

Specific entropy [J.kg1.K1)]

\(\mathrm{T}\) :

Static temperature [°C]

\(Wp\) :

Electrical work required for the pump [kW

\({\Delta T}_{sup}\) :

Superheating temperature [°C]

\(\tau \) :

Axial-wall shear stress [Pa]

References

  1. Bartosiewicz, Y.; Aidoun, Z.; Desevaux, P.; Mercadier, Y.: Numerical and experimental investigations on supersonic ejectors. Int. J. Heat Fluid Flow 26(1), 56–70 (2005). https://doi.org/10.1016/j.ijheatfluidflow.2004.07.003

    Article  Google Scholar 

  2. Eames, I.W.; Aphornratana, S.; Sun, D.-W.: The jet-pump cycle—A low cost refrigerator option powered by waste heat. Heat Recovery Syst. CHP 15(8), 711–721 (1995). https://doi.org/10.1016/0890-4332(95)00006-K

    Article  Google Scholar 

  3. Aidoun, Z.; Ouzzane, M.: The effect of operating conditions on the performance of a supersonic ejector for refrigeration. Int. J. Refrig 27(8), 974–984 (2004). https://doi.org/10.1016/j.ijrefrig.2004.05.006

    Article  Google Scholar 

  4. Thongtip, T.; Aphornratana, S.: An alternative analysis applied to investigate the ejector performance used in R141b jet-pump refrigeration system. Int. J. Refrig 53, 20–33 (2015). https://doi.org/10.1016/j.ijrefrig.2015.01.017

    Article  Google Scholar 

  5. Wang, L.; Wang, C.; Hou, W.; Zhao, H.; Zhang, H.: Experimental investigation on ejector performance near critical back pressure. Int. J. Refrig 80, 158–168 (2017). https://doi.org/10.1016/j.ijrefrig.2017.05.010

    Article  Google Scholar 

  6. Eames, I.W.; Ablwaifa, A.E.; Petrenko, V.: Results of an experimental study of an advanced jet-pump refrigerator operating with R245fa. Appl. Therm. Eng. 27(17), 2833–2840 (2007). https://doi.org/10.1016/j.applthermaleng.2006.12.009

    Article  Google Scholar 

  7. Matsuo, K.; Sasaguchi, K.; Kiyotoki, Y.; Mochizuki, H.: Investigation of Supersonic Air Ejectors : Part 2, Effects of Throat-Area-Ratio on Ejector Performance. Bulletin of JSME 25(210), 1898–1905 (1982). https://doi.org/10.1299/jsme1958.25.1898

    Article  Google Scholar 

  8. Bouhanguel, A.; Desevaux, P.; Gavignet, E.: Flow visualization in supersonic ejectors using laser tomography techniques. Int. J. Refrig 34(7), 1633–1640 (2011). https://doi.org/10.1016/j.ijrefrig.2010.08.017

    Article  Google Scholar 

  9. Zhu, Y.; Jiang, P.: Experimental and analytical studies on the shock wave length in convergent and convergent–divergent nozzle ejectors. Energy Convers. Manage. 88, 907–914 (2014). https://doi.org/10.1016/j.enconman.2014.09.023

    Article  Google Scholar 

  10. Chen, Y.-M.; Sun, C.-Y.: Experimental study of the performance characteristics of a steam-ejector refrigeration system. Exp. Thermal Fluid Sci. 15(4), 384–394 (1997). https://doi.org/10.1016/S0894-1777(97)00006-X

    Article  Google Scholar 

  11. Little, A.B.; Garimella, S.: Shadowgraph visualization of condensing R134a flow through ejectors. Int. J. Refrig 68, 118–129 (2016). https://doi.org/10.1016/j.ijrefrig.2016.04.018

    Article  Google Scholar 

  12. Munday, J.T.; Bagster, D.F.: A New Ejector Theory Applied to Steam Jet Refrigeration. Ind. Eng. Chem. Process. Des. Dev. 16(4), 442–449 (1977). https://doi.org/10.1021/i260064a003

    Article  Google Scholar 

  13. Croquer, S.; Poncet, S.; Aidoun, Z.: Turbulence modeling of a single-phase R134a supersonic ejector. Part 2: Local flow structure and exergy analysis. Int. J. Refrig. (2016). https://doi.org/10.1016/j.ijrefrig.2015.07.029

    Article  Google Scholar 

  14. Lamberts, O.; Chatelain, P.; Bartosiewicz, Y.: Numerical and experimental evidence of the Fabri-choking in a supersonic ejector. Int. J. Heat Fluid Flow 69, 194–209 (2018). https://doi.org/10.1016/j.ijheatfluidflow.2018.01.002

    Article  Google Scholar 

  15. Matsuo, K.; Miyazato, Y.; Kim, H.-D.: Shock train and pseudo-shock phenomena in internal gas flows. Prog. Aerosp. Sci. 35(1), 33–100 (1999). https://doi.org/10.1016/S0376-0421(98)00011-6

    Article  Google Scholar 

  16. Sriveerakul, T.; Aphornratana, S.; Chunnanond, K.: Performance prediction of steam ejector using computational fluid dynamics : Part 1. Validation of the CFD results. Int. J. Therm. Sci. (2007). https://doi.org/10.1016/j.ijthermalsci.2006.10.014

    Article  Google Scholar 

  17. Sriveerakul, T.; Aphornratana, S.; Chunnanond, K.: Performance prediction of steam ejector using computational fluid dynamics: Part 2. Flow structure of a steam ejector influenced by operating pressures and geometries. Int. J. Ther. Sci. 46(8), 823–833 (2007). https://doi.org/10.1016/j.ijthermalsci.2006.10.012

    Article  Google Scholar 

  18. Desevaux, P.; Hostache, G.; Jacquet, P.: Static pressure measurement along the centerline of an induced flow ejector. Exp. Fluids 16(3), 289–291 (1994). https://doi.org/10.1007/BF00206550

    Article  Google Scholar 

  19. Zhu, Y.; Cai, W.; Wen, C.; Li, Y.: Numerical investigation of geometry parameters for design of high performance ejectors. Appl. Therm. Eng. 29(5), 898–905 (2009). https://doi.org/10.1016/j.applthermaleng.2008.04.025

    Article  Google Scholar 

  20. Hakkaki-Fard, A.; Aidoun, Z.; Ouzzane, M.: A computational methodology for ejector design and performance maximisation. Energy Convers. Manage. 105, 1291–1302 (2015). https://doi.org/10.1016/j.enconman.2015.08.070

    Article  Google Scholar 

  21. Allouche, Y.; Bouden, C.; Varga, S.: A CFD analysis of the flow structure inside a steam ejector to identify the suitable experimental operating conditions for a solar-driven refrigeration system. Int. J. Refrig 39, 186–195 (2014). https://doi.org/10.1016/j.ijrefrig.2013.07.027

    Article  Google Scholar 

  22. Han, Y.; Wang, X.; Sun, H.; Zhang, G.; Guo, L.; Tu, J.: CFD simulation on the boundary layer separation in the steam ejector and its influence on the pum** performance. Energy 167, 469–483 (2019). https://doi.org/10.1016/j.energy.2018.10.195

    Article  Google Scholar 

  23. A. Bouhanguel, "Numerical and experimental study of the interaction of two compressible flows in supersonic air ejector. Etude numérique et expérimentale de l’interaction entre deux écoulements compressibles dans un éjecteur supersonique," Université de Franche-Comté, (2013)

  24. Mazzelli, F.; Milazzo, A.: Performance analysis of a supersonic ejector cycle working with R245fa. Int. J. Refrig 49, 79–92 (2015). https://doi.org/10.1016/j.ijrefrig.2014.09.020

    Article  Google Scholar 

  25. S. Croquer, "Combined CFD and Thermodynamic Analysis of a Supersonic Ejector with Liquid Droplets," Ph. D. Thesis, Université de Sherbrooke, Sherbrooke, QC, Canada, (2018)

  26. Hemidi, A.; Henry, F.; Leclaire, S.; Seynhaeve, J.-M.; Bartosiewicz, Y.: CFD analysis of a supersonic air ejector. Part I: Experimental validation of single-phase and two-phase operation. Appl. Therm. Eng. (2008). https://doi.org/10.1016/j.applthermaleng.2008.07.003

    Article  Google Scholar 

  27. Fang, Y.; Croquer, S.; Poncet, S.; Aidoun, Z.; Bartosiewicz, Y.: Drop-in replacement in a R134 ejector refrigeration cycle by HFO refrigerants. Int. J. Refrig 77, 87–98 (2017). https://doi.org/10.1016/j.ijrefrig.2017.02.028

    Article  Google Scholar 

  28. Hamzaoui, M.; Nesreddine, H.; Aidoun, Z.; Balistrou, M.: Experimental study of a low grade heat driven ejector cooling system using the working fluid R245fa. Int. J. Refrig 86, 388–400 (2018). https://doi.org/10.1016/j.ijrefrig.2017.11.018

    Article  Google Scholar 

  29. Zegenhagen, M.T.; Ziegler, F.: Experimental investigation of the characteristics of a jet-ejector and a jet-ejector cooling system operating with R134a as a refrigerant. Int. J. Refrig 56, 173–185 (2015). https://doi.org/10.1016/j.ijrefrig.2015.01.001

    Article  Google Scholar 

  30. H. Nesreddine, A. Bendaoud, Z. Aidoun, M. Ouzzane, and B. Le Lostec, "Experimental investigation of an ejector-compression cascade system activated with low-grade waste heat," in Proceedings of the 24th IIR International Congress of Refrigeration, Yokohama, Japan, August, (2015), pp. 16–22.

  31. Zhu, Y.; Jiang, P.: Experimental and numerical investigation of the effect of shock wave characteristics on the ejector performance. Int. J. Refrig 40, 31–42 (2014). https://doi.org/10.1016/j.ijrefrig.2013.11.008

    Article  Google Scholar 

  32. I. Fluent, FLUENT 6.3 user’s guide. Fluent documentation:(2006.) p.

  33. Besagni, G.; Cristiani, N.; Croci, L.; Guédon, G.R.; Inzoli, F.: Computational fluid-dynamics modelling of supersonic ejectors: Screening of modelling approaches comprehensive validation and assessment of ejector component efficiencies. Appl. Therm. Eng. (2021). https://doi.org/10.1016/j.applthermaleng.2020.116431

    Article  Google Scholar 

  34. Besagni, G.; Cristiani, N.; Croci, L.; Guédon, G.R.; Inzoli, F.: Multi-scale evaluation of ejector performances: The influence of refrigerants and ejector design. Appl. Therm. Eng. (2021). https://doi.org/10.1016/j.applthermaleng.2020.116502

    Article  Google Scholar 

  35. Little, A.B.; Bartosiewicz, Y.; Garimella, S.: Visualization and validation of ejector flow field with computational and first-principles analysis. J. Fluids Eng (2015). https://doi.org/10.1016/j.applthermaleng.2020.116502

    Article  Google Scholar 

  36. Pianthong, K.; Seehanam, W.; Behnia, M.; Sriveerakul, T.; Aphornratana, S.: Investigation and improvement of ejector refrigeration system using computational fluid dynamics technique. Energy Convers. Manage. 48(9), 2556–2564 (2007). https://doi.org/10.1016/j.enconman.2007.03.021

    Article  Google Scholar 

  37. Besagni, G.; Mereu, R.; Inzoli, F.: Ejector refrigeration: A comprehensive review. Renew. Sustain. Energy Rev. 53, 373–407 (2016). https://doi.org/10.1016/j.rser.2015.08.059

    Article  Google Scholar 

  38. Ouzzane, M.; Aidoun, Z.: Model development and numerical procedure for detailed ejector analysis and design. Appl. Therm. Eng. 23(18), 2337–2351 (2003). https://doi.org/10.1016/S1359-4311(03)00208-4

    Article  Google Scholar 

  39. Chunnanond, K.; Aphornratana, S.: An experimental investigation of a steam ejector refrigerator: the analysis of the pressure profile along the ejector. Appl. Therm. Eng. 24(2), 311–322 (2004). https://doi.org/10.1016/j.applthermaleng.2003.07.003

    Article  Google Scholar 

  40. Bartosiewicz, Y.; Aidoun, Z.; Mercadier, Y.: Numerical assessment of ejector operation for refrigeration applications based on CFD. Appl. Therm. Eng. 26(5), 604–612 (2006). https://doi.org/10.1016/j.applthermaleng.2005.07.003

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malek Hamzaoui.

Ethics declarations

Conflict of interest

The authors declared that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamzaoui, M., Nesreddine, H. & Aidoun, Z. A Numerical and Experimental Performance Assessment of a Single-Phase Supersonic Ejector. Arab J Sci Eng 47, 8899–8913 (2022). https://doi.org/10.1007/s13369-021-06437-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06437-2

Keywords

Navigation