Log in

Numerical Simulation of Thermal and Mass Behaviors During Pyrolysis Homogeneous Reaction Within a Screw Reactor

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this study, a three-dimensional numerical analysis has been presented to simulate pyrolysis process involving transfer phenomena within a tubular reactor equipped with a rotating screw. A specific computational fluid dynamics code based on the finite volume method is developed in order to solve the general governing equations of momentum, energy and species concentration coupled with the thermochemical reaction of pyrolysis. The developed model aims to simulate the interaction between the kinetics of pyrolysis and transfer phenomena. Besides, the influence of various dimensionless numbers which are axial Reynolds number (Rea), mass Damköhler number (Dam), thermal Damköhler number (Dath), dimensionless activation energy (E*) and preheat parameter (τ) on the temperature and species concentration fields has been studied. It was found that the decrease in the axial Reynolds number, the thermal Damköhler number and the activation energy enhances the rate of conversion of the cellulose. However, the results of the numerical simulation have shown that the increase in the mass Damköhler number and the inlet temperature improves the cellulose conversion rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Figure 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Abbreviations

A :

Pre-exponential factor (s1)

\({C}_{\mathrm{B}}\) :

Bio-oil product concentration (kmol m3)

C p :

Specific heat capacity (kJ K1 kg1)

\({C}_{\mathrm{B}}^{*}=\frac{{C}_{\mathrm{B}}}{{C}_{{\mathrm{R}}_{\mathrm{in}}}}\) :

Dimensionless product concentration

\({C}_{\mathrm{R}}\) :

Reactant concentration (kmol m3)

\({C}_{\mathrm{R}}^{*}=\frac{{C}_{\mathrm{R}}}{{C}_{{\mathrm{R}}_{\mathrm{in}}}}\) :

Dimensionless reactant concentration

\({C}_{{\mathrm{R}}_{\mathrm{in}}}\) :

Inlet reactant concentration (kmol m3)

D m :

Mass diffusivity (m2 s1)

D :

Diameter of the screw reactor (m)

d :

Agitator diameter (m)

d r :

Rotor shaft diameter (m)

E :

Activation energy (kJ kmol1)

H :

Height of the tubular reactor (m)

\({K}_{0}\) :

Reaction rate constant at Tin (s1)

N :

Rotational speed (s1)

P :

Pressure (Pa)

\({P}^{*}=\frac{P}{\rho {(2\pi NR)}^{2}}\) :

Dimensionless pressure

R gas :

Ideal gas constant ((kJ kmol1 K1)

R :

Screw reactor radius (m)

R rot :

Rotor shaft radius (m)

t :

Time (s)

t* = 2πNt :

Dimensionless time

T in :

Inlet temperature of the fluid (K)

T w :

Wall temperature (K)

T :

Temperature of the fluid (K)

\({T}^{*}=\frac{T-{T}_{\mathrm{in}}}{{T}_{\mathrm{w}}-{T}_{\mathrm{in}}}\) :

Dimensionless temperature

W m :

Mean axial velocity (m s1)

r :

Radial coordinate (m)

\({r}^{*}=\frac{r}{R}\) :

Dimensionless radial coordinate

z :

Axial coordinate (m)

\({z}^{*}=\frac{z}{R}\) :

Dimensionless axial coordinate

θ :

Angular coordinate

U, V, W :

Velocity components (m s1)

U*, V*, W*:

Dimensionless velocity components

ρ :

Fluid density (kg m3)

λ :

Thermal conductivity (W m1 K1)

μ :

Dynamic viscosity (Pa s)

ƞ :

Apparent viscosity

\(\dot{\gamma }\) :

Dimensionless shear rate

\({\Delta H}_{\mathrm{r}}\) :

Heat of reaction (kJ kmol1

\({\mathrm{Da}}_{\mathrm{m}}=\frac{{\mathrm{K}}_{0}L}{{\mathrm{W}}_{\mathrm{m}}}\) :

Mass Damköhler number

\({\mathrm{Da}}_{\mathrm{th}}=\frac{{\Delta \mathrm{H}}_{\mathrm{r}}{\mathrm{C}}_{{\mathrm{R}}_{\mathrm{in}}}}{\uprho {\mathrm{C}}_{\mathrm{p}}({\mathrm{T}}_{\mathrm{w}}-{\mathrm{T}}_{\mathrm{in}})}\) :

Thermal Damköhler number

\({E}^{*}=\frac{E}{{R}_{\mathrm{gas}}{T}_{\mathrm{w}}}\) :

Dimensionless activation energy

\(\mathrm{Fr}=\frac{{\left(2\pi N\right)}^{2}R}{g}\) :

Froude number

\(\mathrm{Od}=\frac{{\tau }_{y}D}{\mu {V}_{a}}\) :

Oldroyd number

\(\mathrm{Pr}=\frac{\mu {C}_{\mathrm{p}}}{\lambda }\) :

Prandtl number

\({\mathrm{Re}}_{\mathrm{a}}=\frac{\rho (D-{d}_{\mathrm{r}}){W}_{\mathrm{m}}}{\mu }\) :

Axial Reynolds number

\({\mathrm{Re}}_{\mathrm{r}}=\frac{\rho {\mathrm{ND}}^{2}}{\mu }\) :

Rotational Reynolds number

\(\mathrm{Sc}=\frac{\mu }{\rho {D}_{\mathrm{m}}}\) :

Schmidt number

\({\mathrm{Pe}}_{\mathrm{m}}={\mathrm{Re}}_{\mathrm{r}}\cdot\mathrm{Sc}\) :

Mass Peclet number

\({\mathrm{Pe}}_{\mathrm{th}}={\mathrm{Re}}_{\mathrm{r}}\cdot\mathrm{Pr}\) :

Thermal Peclet number

\(\tau =\frac{{T}_{\mathrm{inlet}}}{{T}_{\mathrm{w}}-{T}_{\mathrm{inlet}}}\) :

Preheat parameter

References

  1. Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C.: Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86, 1781–1788 (2007). https://doi.org/10.1016/j.fuel.2006.12.013

    Article  Google Scholar 

  2. Kabir, G.; Hameed, B.H.: Recent progress on catalytic pyrolysis of lignocellulosic biomass to high-grade bio-oil and bio-chemicals. Renew. Sustain. Energy Rev. 70, 945–967 (2017). https://doi.org/10.1016/j.rser.2016.12.001

    Article  Google Scholar 

  3. Codignole Luz, F.; Cordiner, S.; Manni, A.; Mulone, V.; Rocco, V.: Biomass fast pyrolysis in a shaftless screw reactor: a 1-D numerical model. Energy 157, 792–805 (2018). https://doi.org/10.1016/j.energy.2018.05.166

    Article  Google Scholar 

  4. Cordiner, S.; Manni, A.; Mulone, V.; Rocco, V.: Biomass pyrolysis modeling of systems at laboratory scale with experimental validation. Int. J. Numer. Methods Heat Fluid Flow 28, 413–438 (2018). https://doi.org/10.1108/HFF-11-2016-0459

    Article  Google Scholar 

  5. Bridgwater, A.V.: Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy 38, 68–94 (2012). https://doi.org/10.1016/j.biombioe.2011.01.048

    Article  Google Scholar 

  6. Diblasi, C.: Modeling chemical and physical processes of wood and biomass pyrolysis. Prog. Energy Combust. Sci. 34, 47–90 (2008). https://doi.org/10.1016/j.pecs.2006.12.001

    Article  Google Scholar 

  7. Anca-Couce, A.: Reaction mechanisms and multi-scale modelling of lignocellulosic biomass pyrolysis. Prog. Energy Combust. Sci. 53, 41–79 (2016). https://doi.org/10.1016/J.PECS.2015.10.002

    Article  Google Scholar 

  8. Mettler, M.S.; Vlachos, D.G.; Dauenhauer, P.J.: Top ten fundamental challenges of biomass pyrolysis for biofuels. Energy Environ. Sci. https://doi.org/10.1039/c2ee21679e

  9. Sharifzadeh, M.; Sadeqzadeh, M.; Guo, M.; Borhani, T.N.; Murthy Konda, N.V.S.N.; Garcia, M.C., et al.: The multi-scale challenges of biomass fast pyrolysis and bio-oil upgrading: review of the state of art and future research directions. Prog. Energy Combust. Sci. 71, 1–80 (2019). https://doi.org/10.1016/j.pecs.2018.10.006

    Article  Google Scholar 

  10. **ong, Q.; Yang, Y.; Xu, F.; Pan, Y.; Zhang, J.; Hong, K., et al.: Overview of computational fluid dynamics simulation of reactor-scale biomass pyrolysis. ACS Sustain. Chem. Eng. 5, 2783–2798 (2017). https://doi.org/10.1021/acssuschemeng.6b02634

    Article  Google Scholar 

  11. Babu, B.V.; Chaurasia, A.S.: Pyrolysis of biomass: improved models for simultaneous kinetics and transport of heat, mass and momentum. Energy Convers. Manag. 45, 1297–1327 (2004). https://doi.org/10.1016/j.enconman.2003.09.013

    Article  Google Scholar 

  12. Vıˆjeu, R.; Gerun, L.; Tazerout, M.; Castelain, C.; Bellettre, J.: Dimensional modelling of wood pyrolysis using a nodal approach. Fuel 87, 3292–3303 (2008). https://doi.org/10.1016/j.fuel.2008.06.004

    Article  Google Scholar 

  13. Ranganathan, P.; Gu, S.: Computational fluid dynamics modelling of biomass fast pyrolysis in fluidised bed reactors, focusing different kinetic schemes. Biores. Technol. 213, 333–341 (2016). https://doi.org/10.1016/j.biortech.2016.02.042

    Article  Google Scholar 

  14. Papari, S.; Hawboldt, K.: A review on the pyrolysis of woody biomass to bio-oil: focus on kinetic models. Renew. Sustain. Energy Rev. 52, 1580–1595 (2015). https://doi.org/10.1016/j.rser.2015.07.191

    Article  Google Scholar 

  15. Lamarche, P.; Tazerout, M.; Gelix, F.; Köhler, S.; Mati, K.; Paviet, F.: Modelling of an indirectly heated fixed bed pyrolysis reactor of wood: transition from batch to continuous staged gasification. Fuel 106, 118–128 (2013). https://doi.org/10.1016/j.fuel.2012.12.005

    Article  Google Scholar 

  16. Di, B.C.: Modelling the fast pyrolysis of cellulosic particles in fluid-bed reactors. Chem. Eng. Sci. 55, 5999–6013 (2000). https://doi.org/10.1016/S0009-2509(00)00406-1

    Article  Google Scholar 

  17. Lin, Y.; Cho, J.; Davis, J.M.; Huber, G.W.: Reaction-transport model for the pyrolysis of shrinking cellulose particles. Chem. Eng. Sci. 74, 160–171 (2012). https://doi.org/10.1016/j.ces.2012.02.016

    Article  Google Scholar 

  18. Shadangi, K.P.; Mohanty, K.: Kinetic study and thermal analysis of the pyrolysis of non-edible oilseed powders by thermogravimetric and differential scanning calorimetric analysis. Renew. Energy 63, 337–344 (2014). https://doi.org/10.1016/j.renene.2013.09.039

    Article  Google Scholar 

  19. Huang, X.; Cao, J.-P.; Zhao, X.-Y.; Wang, J.-X.; Fan, X.; Zhao, Y.-P., et al.: Pyrolysis kinetics of soybean straw using thermogravimetric analysis. Fuel 169, 93–98 (2016). https://doi.org/10.1016/j.fuel.2015.12.011

    Article  Google Scholar 

  20. Cozzani, V.; Nicolella, C.; Rovatti, M.; Tognotti, L.: Modeling and experimental verification of physical and chemical processes during pyrolysis of a refuse-derived. Fuel (1996). https://doi.org/10.1021/ie9500984

    Article  Google Scholar 

  21. Tanoue, K.-I.; Hinauchi, T.; Oo, T.; Nishimura, T.; Taniguchi, M.; Sasauchi, K.-I.: Modeling of heterogeneous chemical reactions caused in pyrolysis of biomass particles. Adv. Powder Technol. 18, 825–840 (2007). https://doi.org/10.1163/156855207782515058

    Article  Google Scholar 

  22. Liang, X.: Numerical modeling of combustion and pyrolysis of cellulosic biomass in thermogravimetric systems. Fuel 79, 1477–1486 (2000). https://doi.org/10.1016/S0016-2361(99)00286-0

    Article  Google Scholar 

  23. Di Blasi, C.; Branca, C.; Teislev, B.: Development of a novel reactor for the oxidative degradation of straw. Biores. Technol. 91, 263–271 (2004). https://doi.org/10.1016/S0960-8524(03)00200-1

    Article  Google Scholar 

  24. Yang, Y.B.; Phan, A.N.; Ryu, C.; Sharifi, V.; Swithenbank, J.: Mathematical modelling of slow pyrolysis of segregated solid wastes in a packed-bed pyrolyser. Fuel 86, 169–180 (2007). https://doi.org/10.1016/j.fuel.2006.07.012

    Article  Google Scholar 

  25. Ghabi, C.; Benticha, H.; Sassi, M.: Two-dimensional computational modeling and simulation of wood particles pyrolysis in a fixed bed reactor. Combust. Sci. Technol. 180, 833–853 (2008). https://doi.org/10.1080/00102200801894091

    Article  Google Scholar 

  26. Olaleye, A.K.; Adedayo, K.J.; Wu, C.; Nahil, M.A.; Wang, M.; Williams, P.T.: Experimental study, dynamic modelling, validation and analysis of hydrogen production from biomass pyrolysis/gasification of biomass in a two-stage fixed bed reaction system. Fuel 137, 364–374 (2014). https://doi.org/10.1016/j.fuel.2014.07.076

    Article  Google Scholar 

  27. Borello, D.; Cedola, L.; Frangioni, G.V.; Meloni, R.; Venturini, P.; De Filippis, P., et al.: Development of a numerical model for biomass packed bed pyrolysis based on experimental validation. Appl. Energy (2016). https://doi.org/10.1016/j.apenergy.2015.08.007

    Article  Google Scholar 

  28. Papadikis, K.; Gu, S.; Bridgwater, A.V.V.: CFD modelling of the fast pyrolysis of biomass in fluidised bed reactors. Part B Heat, momentum and mass transport in bubbling fluidised beds. Chem. Eng. Sci. 64, 1036–1045 (2009). https://doi.org/10.1016/j.ces.2008.11.007

    Article  Google Scholar 

  29. Papadikis, K.; Gu, S.; Bridgwater, A.V.; Gerhauser, H.: Application of CFD to model fast pyrolysis of biomass. Fuel Process. Technol. 90, 504–512 (2009). https://doi.org/10.1016/j.fuproc.2009.01.010

    Article  Google Scholar 

  30. Kaushal, P.; Abedi, J.: A simplified model for biomass pyrolysis in a fluidized bed reactor. J. Ind. Eng. Chem. 16, 748–755 (2010). https://doi.org/10.1016/j.jiec.2010.07.008

    Article  Google Scholar 

  31. Gentile, G.; Debiagi, P.E.A.; Cuoci, A.; Frassoldati, A.; Ranzi, E.; Faravelli, T.: A computational framework for the pyrolysis of anisotropic biomass particles. Chem. Eng. J. 321, 458–473 (2017). https://doi.org/10.1016/j.cej.2017.03.113

    Article  Google Scholar 

  32. Trendewicz, A.; Braun, R.; Dutta, A.; Ziegler, J.: One dimensional steady-state circulating fluidized-bed reactor model for biomass fast pyrolysis. Fuel (2014). https://doi.org/10.1016/j.fuel.2014.05.009

    Article  Google Scholar 

  33. **ong, Q.; Aramideh, S.; Kong, S.-C.: Modeling effects of operating conditions on biomass fast pyrolysis in bubbling fluidized bed reactors. Energy Fuels 27, 5948–5956 (2013). https://doi.org/10.1021/ef4012966

    Article  Google Scholar 

  34. **ong, Q.; Kong, S.-C.: Modeling effects of interphase transport coefficients on biomass pyrolysis in fluidized beds. Powder Technol. 262, 96–105 (2014). https://doi.org/10.1016/j.powtec.2014.04.062

    Article  Google Scholar 

  35. **ong, Q.; Kong, S.-C.; Passalacqua, A.: Development of a generalized numerical framework for simulating biomass fast pyrolysis in fluidized-bed reactors. Chem. Eng. Sci. 99, 305–313 (2013). https://doi.org/10.1016/j.ces.2013.06.017

    Article  Google Scholar 

  36. Rabinovich, O.S.; Borodulya, V.A.; Vinogradov, L.M.; Korban, V.V.: Fast pyrolysis of an ensemble of biomass particles in a fluidized bed. J. Eng. Phys. Thermophy. 83, 742–752 (2010). https://doi.org/10.1007/s10891-010-0393-4

  37. Boateng, A.A.; Mtui, P.L.: CFD modeling of space-time evolution of fast pyrolysis products in a bench-scale fluidized-bed reactor. Appl. Therm. Eng. 33–34, 190–198 (2012). https://doi.org/10.1016/j.applthermaleng.2011.09.034

    Article  Google Scholar 

  38. Badillo-Hernandez, U.; Alvarez-Icaza, L.; Alvarez, J.: Model design of a class of moving-bed tubular gasification reactors. Chem. Eng. Sci. 101, 674–685 (2013). https://doi.org/10.1016/j.ces.2013.07.001

    Article  Google Scholar 

  39. Chandrasekaran, A.; Ramachandran, S.; Subbiah, S.: Modeling, experimental validation and optimization of Prosopis juliflora fuelwood pyrolysis in fixed-bed tubular reactor. Bioresour. Technol. 264, 66–77 (2018). https://doi.org/10.1016/j.biortech.2018.05.013

    Article  Google Scholar 

  40. Aramideh, S.; **ong, Q.; Kong, S.-C.; Brown, R.C.: Numerical simulation of biomass fast pyrolysis in an auger reactor. Fuel 156, 234–242 (2015). https://doi.org/10.1016/j.fuel.2015.04.038

    Article  Google Scholar 

  41. Funke, A.; Henrich, E.; Dahmen, N.; Sauer, J.: Dimensional analysis of auger-type fast pyrolysis reactors. Energy Technol. 5, 119–129 (2017). https://doi.org/10.1002/ente.201600095

    Article  Google Scholar 

  42. Campuzano, F.; Brown, R.C.; Martínez, J.D.: Auger reactors for pyrolysis of biomass and wastes. Renew. Sustain. Energy Rev. 102, 372–409 (2019). https://doi.org/10.1016/j.rser.2018.12.014

    Article  Google Scholar 

  43. Ingram, L.; Mohan, D.; Bricka, M.; Steele, P.; Strobel, D.; Crocker, D., et al.: Pyrolysis of wood and bark in an auger reactor: physical properties and chemical analysis of the produced bio-oils. Energy Fuels 22, 614–625 (2008). https://doi.org/10.1021/ef700335k

    Article  Google Scholar 

  44. Ali, S.; Baccar, M.: Numerical study of hydrodynamic and thermal behaviors in a scraped surface heat exchanger with helical ribbons. Appl. Therm. Eng. 111, 1069–1082 (2017). https://doi.org/10.1016/j.applthermaleng.2016.09.116

    Article  Google Scholar 

  45. Mitsoulis, E.: Flows of viscoplastic materials: models and computations (2007)

  46. Papanastasiou, T.C.: Flows of materials with yield. J. Rheol. 31, 385–404 (1987). https://doi.org/10.1122/1.549926

    Article  MATH  Google Scholar 

  47. Patankar, S.V.: Numerical heat transfer and fluid flow (1980)

  48. Douglas, J.; Gunn, J.E.: A general formulation of alternating direction methods. Numer. Math. 6, 428–453 (1964). https://doi.org/10.1007/bf01386093

    Article  MathSciNet  MATH  Google Scholar 

  49. Abbaszadeh Molaei, E.; Hashemi Amrei, S.M.H.H.; Molaei Dehkordi, A.; Haghi, M.: Transient and steady-state analysis of heat, mass, and momentum transfer in develo** and fully-developed regions of homogeneous tubular reactors with non-Newtonian fluid flow. Energy Convers. Manag. 65, 308–321 (2013). https://doi.org/10.1016/j.enconman.2012.07.026

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amal Masmoudi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masmoudi, A., Hammami, M. & Baccar, M. Numerical Simulation of Thermal and Mass Behaviors During Pyrolysis Homogeneous Reaction Within a Screw Reactor. Arab J Sci Eng 46, 12549–12572 (2021). https://doi.org/10.1007/s13369-020-05295-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05295-8

Keywords

Navigation