Log in

Enhancing CO2 Adsorption Capacity and Cycling Stability of Mg-MOF-74

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Mitigation of carbon dioxide emitted from burning fossil fuels is essential to overcome climate change issues. Adsorption technology could significantly help in capturing CO2 and, thereby minimizing global warming with low-cost penalties. Mg-MOF-74 was reported as a distinguished adsorbent that has high adsorption capacity at flue gas conditions. In the present study, an improvement of crystallinity, porosity, and capacity of Mg-MOF-74 was investigated through controlling the heat surface area of the sample solution during the synthesis process. The results showed that the increase in the heat surface area during the synthesis process increased BET surface area and pore volume of the adsorbent by 38% and 44%, respectively, over those obtained by the reported method in the literature. For additional improvement in the cyclic CO2 uptake, multi-walled carbon nanotubes (MWCNT) were incorporated with Mg-MOF-74. The adsorption cycling stability was performed using three techniques: temperature swing adsorption (TSA), vapor swing adsorption (VSA), and temperature vacuum swing adsorption (TVSA). It was observed that the incorporation of MWCNT with Mg-MOF-74 resulted in higher CO2 recycling capacity (14.4%) using thermal-based regeneration processes (i.e., TSA and TVSA) due to the enhancement in the thermal transport properties of the new composite (MWCNT/Mg-MOF-74).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

BET:

Brunauer–Emmett–Teller

CAS:

Chemical abstracts service

CCS:

Carbon capture and consequence

CNT:

Carbon nanotubes

ESA:

Electric swing adsorption

GHG:

Greenhouse gases

LAHT:

Large area for heat transfer

MAHT:

Medium area for heat transfer

MWCNT:

Multi-walled carbon nanotube

MOF:

Metal–organic framework

SAHT:

Small area for heat transfer

TSA:

Temperature swing adsorption

TVSA:

Temperature vacuum swing adsorption

VSA:

Vacuum swing adsorption

ZIF:

Zeolitic imidazolate framework

References

  1. Ho, T.M.; Howes, T.; Bhandari, B.R.: Encapsulation of gases in powder solid matrices and their applications: a review. Powder Technol. 259, 87–108 (2014). https://doi.org/10.1016/j.powtec.2014.03.054

    Article  Google Scholar 

  2. Cleugh, H.: Climate Change: Science and Solutions for Australia. CSIRO Publishing, Collingwood (2011)

    Google Scholar 

  3. Taub, D.R.; Miller, B.; Allen, H.: Effects of elevated CO2 on the protein concentration of food crops: a meta-analysis. Glob. Change Biol. 14, 565–575 (2008). https://doi.org/10.1111/j.1365-2486.2007.01511.x

    Article  Google Scholar 

  4. Ravishankara, A.R.; Daniel, J.S.; Portmann, R.W.: Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science (80-) 326, 123–125 (2009). https://doi.org/10.1126/science.1176985

    Article  Google Scholar 

  5. D’Alessandro, D.M.; McDonald, T.: Toward carbon dioxide capture using nanoporous materials. Pure Appl. Chem. (2010). https://doi.org/10.1351/pac-con-10-09-18

    Article  Google Scholar 

  6. Advancing the Science of Climate Change. Washington, DC: National Academies Press (2010) https://doi.org/10.17226/12782

  7. IPCC. Climate Change 2007: Synthesis Report (2007). https://doi.org/10.1256/004316502320517344

  8. The Carbon Capture and Storage Association (CCSA). http://www.ccsassociation.org

  9. Choi, S.; Drese, J.H.; Jones, C.W.: Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem 2, 796–854 (2009). https://doi.org/10.1002/cssc.200900036

    Article  Google Scholar 

  10. Gibson, J.A.A.; Mangano, E.; Shiko, E.; Greenaway, A.G.; Gromov, A.V.; Lozinska, M.M.; et al.: Adsorption materials and processes for carbon capture from gas-fired power plants: AMPGas. Ind. Eng. Chem. Res. 55, 3840–3851 (2016). https://doi.org/10.1021/acs.iecr.5b05015

    Article  Google Scholar 

  11. Abanades, J.C.; Arias, B.; Lyngfelt, A.; Mattisson, T.; Wiley, D.E.; Li, H.; et al.: Emerging CO2 capture systems. Int. J. Greenh. Gas Control 40, 126–166 (2015). https://doi.org/10.1016/j.ijggc.2015.04.018

    Article  Google Scholar 

  12. Ben-Mansour, R.; Habib, M.A.; Bamidele, O.E.; Basha, M.; Qasem, N.A.A.; Peedikakkal, A.; et al.: Carbon capture by physical adsorption: materials, experimental investigations and numerical modeling and simulations—a review. Appl. Energy (2016). https://doi.org/10.1016/j.apenergy.2015.10.011

    Article  Google Scholar 

  13. Samanta, A.; Zhao, A.; Shimizu, G.K.H.; Sarkar, P.; Gupta, R.: Post-combustion CO2 capture using solid sorbents: a review. Ind. Eng. Chem. Res. 51, 1438–1463 (2012). https://doi.org/10.1021/ie200686q

    Article  Google Scholar 

  14. Chomiak, K.; Gryglewicz, S.; Kierzek, K.; Machnikowski, J.: Optimizing the properties of granular walnut-shell based KOH activated carbons for carbon dioxide adsorption. J. CO2 Util. 21, 436–443 (2017). https://doi.org/10.1016/j.jcou.2017.07.026

    Article  Google Scholar 

  15. Lu, C.; Bai, H.; Wu, B.; Su, F.; Hwang, J.F.: Comparative study of CO2 capture by carbon nanotubes, activated carbons, and zeolites. Energy Fuels 22, 3050–3056 (2008). https://doi.org/10.1021/ef8000086

    Article  Google Scholar 

  16. Rashidi, N.A.; Yusup, S.: Potential of palm kernel shell as activated carbon precursors through single stage activation technique for carbon dioxide adsorption. J. Clean. Prod. 168, 474–486 (2017). https://doi.org/10.1016/j.jclepro.2017.09.045

    Article  Google Scholar 

  17. Siriwardane, R.V.; Shen, M.-S.; Fisher, E.P.; Poston, J.A.: Adsorption of CO2 on molecular sieves and activated carbon. Energy Fuels 15, 279–284 (2001). https://doi.org/10.1021/ef000241s

    Article  Google Scholar 

  18. Qasem, N.A.A.; Ben-Mansour, R.; Habib, M.A.: Enhancement of adsorption carbon capture capacity of 13X with optimal incorporation of carbon nanotubes. Int. J. Energy Environ. Eng. 8, 219–230 (2017). https://doi.org/10.1007/s40095-017-0235-7

    Article  Google Scholar 

  19. Gholipour, F.; Mofarahi, M.: Adsorption equilibrium of methane and carbon dioxide on zeolite 13X: experimental and thermodynamic modeling. J. Supercrit. Fluids 111, 47–54 (2016). https://doi.org/10.1016/j.supflu.2016.01.008

    Article  Google Scholar 

  20. Silva, J.A.C.; Cunha, A.F.; Schumann, K.; Rodrigues, A.E.: Binary adsorption of CO2/CH4 in binderless beads of 13X zeolite. Microporous Mesoporous Mater. 187, 100–107 (2014). https://doi.org/10.1016/j.micromeso.2013.12.017

    Article  Google Scholar 

  21. Mcewen, J.; Hayman, J.; Yazaydin, A.O.: A comparative study of CO2, CH4 and N2 adsorption in ZIF-8, Zeolite-13X and BPL activated carbon. Chem. Phys. 412, 72–76 (2013). https://doi.org/10.1016/j.chemphys.2012.12.012

    Article  Google Scholar 

  22. Abdelnaby, M.M.; Qasem, N.A.A.; Al-Maythalony, B.A.; Cordova, K.E.; Al Hamouz, O.C.S.: A microporous organic copolymer for selective CO2 capture under humid conditions. ACS Sustain. Chem. Eng. (2019). https://doi.org/10.1021/acssuschemeng.9b02334

    Article  Google Scholar 

  23. Abdelnaby, M.M.; Alloush, A.M.; Qasem, N.A.A.; Al-Maythalony, B.A.; Mansour, R.B.; Cordova, K.E.; et al.: Carbon dioxide capture in the presence of water by an amine-based crosslinked porous polymer. J. Mater. Chem. A (2018). https://doi.org/10.1039/c8ta00012c

    Article  Google Scholar 

  24. Alloush, A.M.; Abdelnaby, M.M.; Cordova, K.E.; Qasem, N.A.A.; Al-Maythalony, B.A.; Jalilov, A.; et al.: Selectively capturing carbon dioxide from mixed gas streams using a new microporous organic copolymer. Microporous Mesoporous Mater. (2020). https://doi.org/10.1016/j.micromeso.2020.110391

    Article  Google Scholar 

  25. Wen, Z.; Chen, W.; Li, Y.; Xu, J.: A theoretical mechanism study on the ethylenediamine grafting on graphene oxides for CO2 capture. Arab. J. Sci. Eng. 43, 5949–5955 (2018). https://doi.org/10.1007/s13369-018-3087-4

    Article  Google Scholar 

  26. Qasem, N.A.A.; Qadir, N.U.; Ben-Mansour, R.; Said, S.A.M.: Synthesis, characterization, and CO2 breakthrough adsorption of a novel MWCNT/MIL-101(Cr) composite. J. CO2 Util. 22, 238–249 (2017). https://doi.org/10.1016/j.jcou.2017.10.015

    Article  Google Scholar 

  27. Sarfraz, M.; Ba-Shammakh, M.: Combined effect of CNTs with ZIF-302 into polysulfone to fabricate MMMs for enhanced CO2 separation from flue gases. Arab. J. Sci. Eng. 41, 2573–2582 (2016). https://doi.org/10.1007/s13369-016-2096-4

    Article  Google Scholar 

  28. Pentyala, V.; Davydovskaya, P.; Ade, M.; Pohle, R.; Urban, G.: Carbon dioxide gas detection by open metal site metal organic frameworks and surface functionalized metal organic frameworks. Sens. Actuators B Chem. 225, 363–368 (2016). https://doi.org/10.1016/j.snb.2015.11.071

    Article  Google Scholar 

  29. Campbell, J.; Tokay, B.: Controlling the size and shape of Mg-MOF-74 crystals to optimise film synthesis on alumina substrates. Microporous Mesoporous Mater. 251, 190–199 (2017). https://doi.org/10.1016/j.micromeso.2017.05.058

    Article  Google Scholar 

  30. Qasem, N.A.A.; Ben-Mansour, R.: Adsorption breakthrough and cycling stability of carbon dioxide separation from CO2/N2/H2O mixture under ambient conditions using 13X and Mg-MOF-74. Appl. Energy 230, 1093–1107 (2018). https://doi.org/10.1016/j.apenergy.2018.09.069

    Article  Google Scholar 

  31. Ben-Mansour, R.; Qasem, N.A.A.; Antar, M.A.: Carbon dioxide adsorption separation from dry and humid CO2/N2 mixture. Comput. Chem. Eng. (2018). https://doi.org/10.1016/j.compchemeng.2018.06.016

    Article  Google Scholar 

  32. Ben-Mansour, R.; Abuelyamen, A.; Qasem, N.A.A.: Thermal design and management towards high capacity CO2 adsorption systems. Energy Convers. Manag. 212, 112796 (2020). https://doi.org/10.1016/j.enconman.2020.112796

    Article  Google Scholar 

  33. Adhikari, A.K.; Lin, K.-S.: Improving CO2 adsorption capacities and CO2/N2 separation efficiencies of MOF-74(Ni,Co) by do** palladium-containing activated carbon. Chem. Eng. J. 284, 1348–1360 (2016). https://doi.org/10.1016/j.cej.2015.09.086

    Article  Google Scholar 

  34. Lee, D.J.; Li, Q.; Kim, H.; Lee, K.: Preparation of Ni-MOF-74 membrane for CO2 separation by layer-by-layer seeding technique. Microporous Mesoporous Mater. 163, 169–177 (2012). https://doi.org/10.1016/j.micromeso.2012.07.008

    Article  Google Scholar 

  35. Cho, H.Y.; Yang, D.A.; Kim, J.; Jeong, S.Y.; Ahn, W.S.: CO2 adsorption and catalytic application of Co-MOF-74 synthesized by microwave heating. Catal. Today 185, 35–40 (2012). https://doi.org/10.1016/j.cattod.2011.08.019

    Article  Google Scholar 

  36. Ben-Mansour, R.; Qasem, N.A.A.; Habib, M.A.: Adsorption characterization and CO2 breakthrough of MWCNT/Mg-MOF-74 and MWCNT/MIL-100(Fe) composites. Int. J. Energy Environ. Eng. (2018). https://doi.org/10.1007/s40095-018-0260-1

    Article  Google Scholar 

  37. Ben-Mansour, R.; Qasem, N.A.A.: An efficient temperature swing adsorption (TSA) process for separating CO2 from CO2/N2 mixture using Mg-MOF-74. Energy Convers. Manag. 156, 10–24 (2018). https://doi.org/10.1016/j.enconman.2017.11.010

    Article  Google Scholar 

  38. Qasem, N.A.A.; Ben-Mansour, R.: Energy and productivity efficient vacuum pressure swing adsorption process to separate CO2 from CO2/N2 mixture using Mg-MOF-74: a CFD simulation. Appl. Energy 209, 190–202 (2018). https://doi.org/10.1016/j.apenergy.2017.10.098

    Article  Google Scholar 

  39. Wang, L.J.; Deng, H.; Furukawa, H.; Gándara, F.; Cordova, K.E.; Peri, D.; et al.: Synthesis and characterization of metal-organic framework-74 containing 2, 4, 6, 8, and 10 different metals. Inorg. Chem. 53, 5881–5883 (2014). https://doi.org/10.1021/ic500434a

    Article  Google Scholar 

  40. Yang, D.-A.; Cho, H.-Y.; Kim, J.; Yang, S.-T.; Ahn, W.-S.: CO2 capture and conversion using Mg-MOF-74 prepared by a sonochemical method. Energy Environ. Sci. 5, 6465–6473 (2012). https://doi.org/10.1039/c1ee02234b

    Article  Google Scholar 

Download references

Acknowledgements

The support received from Deanship of Research (DSR), KFUPM, under Project SB191021, is highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naef A. A. Qasem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qasem, N.A.A., Abuelyamen, A. & Ben-Mansour, R. Enhancing CO2 Adsorption Capacity and Cycling Stability of Mg-MOF-74. Arab J Sci Eng 46, 6219–6228 (2021). https://doi.org/10.1007/s13369-020-04946-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04946-0

Keywords

Navigation