Log in

Evaluating the Influence of Temperature and Flow Rate on Biogas Production from Wood Waste via a Packed-Bed Bioreactor

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Operating a bioreactor with a low contact area greatly reduces the efficiency of methanogenic bacteria to produce biogas using an anaerobic digestion process. In this work, a packed-bed bioreactor under a flow-mixing technique was used to enhance the contact area to produce biogas from sawdust. The bioreactor was designed with a diameter of 10 cm and a height of 60 cm and was packed with 1.5-cm spherical glass beads. The effect of the digestion temperature on the cumulative biogas production was investigated at different temperatures (i.e., 30, 35, 40, 45, and 50 °C). Also, the influence of the flow-mixing technique on the biogas yield was evaluated at different substrate flow rates of 0.5. 1, 1.5, 2, and 2.5 m3/h. It was observed that the best operating conditions for the methanogenic bioconversion to achieve high biomethane production (> 71.2%) were 40 °C and 1.5 m3/h for the temperature and substrate flow rate, respectively. At these conditions, the biogas and biomethane yields were 850 mL/g VS and 605.2 mL CH4/g VS, respectively. The results show that at a mild flow rate, a biothin film of a high surface area formed over the packing, with a low resistance to transport processes. Moreover, at a high flow rate, the thin film was destroyed, achieving a low biogas yield. Finally, this technique produced a high efficiency, high homogeneity mixture, simple operation, and low mixing time in the packed-bed bioreactor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adekunle, K.F.; Okolie, J.A.: A review of biochemical process of anaerobic digestion. Adv. Biosci. Biotechnol. 6, 205–2012 (2015)

    Article  Google Scholar 

  2. Efendiev, A.M.; Nikolaev, Y.E.; Evstaf’ev, D.P.: Opportunities of energy supply of farm holdings on the basis of small-scale renewable energy sources. Thermal Eng. 63, 114–121 (2016)

    Article  Google Scholar 

  3. Shabeeb, K.M.; Sukkar, K.A.; Azeez, R.A.; Salah, N.J.; Yousif, M.A.; Manoual, N.: A new development in biological process for wastewater treatment to produce renewable fuel. Am. J. Appl. Sci. 7, 1400–1405 (2010)

    Article  Google Scholar 

  4. Manyi-Loh, C.E.; Mamphweli, S.N.; Meyer, E.L.; Okoh, A.I.; Makaka, G.; Simon, M.: Microbial anaerobic digestion: process dynamics and implications from the renewable energy, environmental and agronomy perspectives. Int. J. Environ. Sci. Te. 16, 3913–3934 (2019)

    Article  Google Scholar 

  5. Bouallagui, H.; Haouari, O.; Touhami, Y.; Cheikh, R.B.; Marouani, L.; Hamdi, M.: Effect of temperature on the performance of an anaerobic tubular reactor treating fruit and vegetable waste. Process Biochem. 39, 2143–2148 (2004)

    Article  Google Scholar 

  6. Azmy, N.S.; Mishra, S.; Maheshwari, R.C.: Effects of sawdust on biogas production from cowdung. J. Fuel Sci. Technol. Inter. 9(5), 567–585 (1991)

    Article  Google Scholar 

  7. Rajagopal, R.; Ghosh, D.; Ashraf, S.; Goyette, B.; Zhao, X.: Effects of low-temperature dry anaerobic digestion on methane production and pathogen reduction in dairy cow manure. Int. J. Environ. Sci. Te. 16, 4803–4810 (2019)

    Article  Google Scholar 

  8. Speece, R.E.: Anaerobic Biotechnology for Industrial Wastewaters. Archae Press, Nashville (1996)

    Google Scholar 

  9. Pahla, G.; Mamvura, T.A.; Ntuli, F.; Muzenda, E.: Energy densification of animal waste lignocellulose biomass and raw biomass. S. Afr. J. Chem. Eng. 24, 168–175 (2017). https://doi.org/10.1016/j.sajce.2017.10.004

    Article  Google Scholar 

  10. Yetilmezsoy, K.; Sakar, S.: Development of empirical models for performance evaluation of UASB reactors treating poultry manure wastewater under different operational conditions. J. Hazard. Mater. 153, 532–543 (2008)

    Article  Google Scholar 

  11. Zhong, J.J.: Recent advances in bioreactor engineering. Korean J. Chem. Eng. 27, 1035–1041 (2010)

    Article  Google Scholar 

  12. Ververis, C.; Georghiou, K.; Danielidis, D.; Hatzinikolaou, D.G.; Santas, P.; Santas, R.; Corleti, V.: Cellulose, hemicelluloses, lignin and ash content of some organic materials and their suitability for use as paper pulp supplements. Bioresour. Technol. 98, 296–301 (2007)

    Article  Google Scholar 

  13. Mason, P.M.; Stuckey, D.C.: Biofilms, bubbles and boundary layers–A new approach to understanding cellulolysis in anaerobic and ruminant digestion. Water Res. 104, 93–100 (2016)

    Article  Google Scholar 

  14. Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D.: Determination of structural carbohydrates and lignin in biomass. NREL, Laboratory analytical procedure (LAP) (2012)

    Google Scholar 

  15. Trad, Z.; Vial, C.; Fontaine, J.-P.; Larroche, C.: Modeling of hydrodynamics and mixing in a submerged membrane bioreactor. Chem. Eng. J. 282, 77–90 (2015)

    Article  Google Scholar 

  16. Guitonas, A.; Paschalidis, G.; Zouboulis, A.: Treatment of strong wastewater by fixed bed anaerobic reactors with organic support. Water Sci. Technol. 29, 257–263 (1994)

    Article  Google Scholar 

  17. Gebremedhin, K.G.; Wu, B.; Gooch, C.; Wright, P.; Inglis, S.: Heat transfer model for plug-flow anaerobic digesters. Trans. ASAE 48, 777–785 (2005)

    Article  Google Scholar 

  18. Dixon, A.G.: Correlations for wall and particle shape effects on fixed bed bulk voidage. Can. J. Chem. Eng. 66, 705–708 (1988)

    Article  Google Scholar 

  19. Perrigault, T.; Weatherford, V.; Martí-Herrero, J.; Poggio, D.: Towards thermal design optimization of tubular digesters in cold climates: a heat transfer model. Bioresour. Technol. 124, 259–268 (2012)

    Article  Google Scholar 

  20. Pokorna-Krayzelova, L.; Mampaey, K.E.; Vannecke, T.P.W.; Bartáček, J.; Jeníček, P.; Volcke, E.I.P.: Model-based optimization of microaeration for biogas desulfurization in UASB reactors. Biochem. Eng. J. 12515, 171–179 (2017)

    Article  Google Scholar 

  21. Merlin, G.; Kohler, F.; Bouvier, M.; Lissolo, T.; Boileau, H.: Importance of heat transfer in an anaerobic digestion plant in a continental climate context. Bioresour. Technol. 124, 59–67 (2012)

    Article  Google Scholar 

  22. Converti, A.; Del Borghi, A.; Zilli, M.; Arni, S.; Del Borghi, M.: Anaerobic digestion of the vegetable fraction of municipal refuses: mesophilic versus thermophilic conditions. Bioprocess. Eng. 21(4), 371–376 (1999)

    Article  Google Scholar 

  23. Amin, F.R.; Khalid, H.; Zhang, H.; Rahman, S.; Zhang, R.; Liu, G.; Chen, C.: Pretreatment methods of lignocellulosic biomass for anaerobic digestion. AMB Express. 7, 72 (2017)

    Article  Google Scholar 

  24. Deublein, D.; Steinhauser, A.: Biogas from Waste and Renewable Resources: An Introduction, 2nd edn. Wiley, New York (2011). https://doi.org/10.1002/9783527632794

    Book  Google Scholar 

  25. Sivakumar, P.; Bhagiyalakshmi, M.; Anbarasu, K.: Anaerobic treatment of spoiled milk from milk processing industry for energy recovery—a laboratory to pilot scale study. Fuel 96, 482–486 (2012)

    Article  Google Scholar 

  26. **ong, X.; Shi, G.; Luo, T.; Kong, C.: The cause of scuming during straw biogas fermentation and countermeasures. China Biogas. 32, 51–54 (2014)

    Google Scholar 

  27. Patinvoh, R.J.; Mehrjerdi, A.K.; Horváth, I.S.; Taherzadeh, M.I.: Dry fermentation of manure with straw in continuous plug flow reactor: reactor development and process stability at different loading rates. Bioresour. Technol. 224, 197–205 (2017)

    Article  Google Scholar 

  28. Ali, S.S.; Abomohra, A.E.; Sun, J.: Effective bio-pretreatment of sawdust waste with a novel microbial consortium for enhanced biomethanation. Bioresour. Technol. 238, 425–432 (2017)

    Article  Google Scholar 

  29. Hansen, T.L.; Schmidt, J.E.; Angelidaki, I.; Marca, E.; Jansen, J.C.; Mosbæk, H.; Christensen, T.H.: Method for determination of methane potentials of solid organic waste. Waste Manag 24, 393–400 (2004)

    Article  Google Scholar 

  30. Arenas, C.B.; Meredith, W.; Snape, C.E.; Gómez, X.; González, J.F.; Martinez, E.J.: Effect of char addition on anaerobic digestion of animal by-products: evaluating biogas production and process performance. Environ. Sci. Pollut. Res. 27, 24387–24399 (2020)

    Article  Google Scholar 

  31. Al Zuahiri, F.; Pirozzi, D.; Ausiello, A.; Florio, C.; Turco, M.; Zuccaro, G.; Micoli, L.; Toscano, G.: Biogas production from solid state anaerobic digestion for municipal solid waste. Chem. Eng. Trans. 43, 2407–2412 (2015)

    Google Scholar 

  32. Muri, P.; Marinšek-Logar, R.M.; D**ović, P.; Pintar, A.: Influence of support materials on continuous hydrogen production in anaerobic packed-bed reactor with immobilized hydrogen producing bacteria at acidic conditions. Enzyme Microb. Technol. 111, 87–96 (2018)

    Article  Google Scholar 

  33. Bala, R.; Mondal, M.K.: Exhaustive characterization on chemical and thermal treatment of sawdust for improved biogas production. Biomass Convers. Biorefin. 8, 991–1003 (2018)

    Article  Google Scholar 

  34. Pham, C.H.; Triolo, J.M.; Cu, T.T.T.; Pedersen, L.; Sommer, S.G.: Validation and recommendation of methods to measure biogas production potential of animal manure. Asian Austral. J. Anim. Sci. 26, 864–873 (2013)

    Article  Google Scholar 

  35. Liu, Y.; Zhu, Y.; Jia, H.; Yong, X.; Zhang, L.; Zhou, J.; Cao, Z.; Kruse, A.; Wei, P.: Effects of different biofilm carriers on biogas production during anaerobic digestion of corn straw. Bioresour. Technol. 244, 445–451 (2017)

    Article  Google Scholar 

  36. Li, Y.; Zhang, R.; He, Y.; Zhang, C.; Liu, X.; Chen, C.; Liu, G.: Anaerobic co-digestion of chicken manure and corn stover in batch and continuously stirred tank reactor (CSTR). Bioresour. Technol. 156, 342–347 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the staff of the Design and Industrial Production Unit/Chemical Engineering Department/University of Technology, Baghdad, Iraq, for their scientific support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalid A. Sukkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sukkar, K.A., Al-Zuhairi, F.K. & Dawood, E.A. Evaluating the Influence of Temperature and Flow Rate on Biogas Production from Wood Waste via a Packed-Bed Bioreactor. Arab J Sci Eng 46, 6167–6175 (2021). https://doi.org/10.1007/s13369-020-04900-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04900-0

Keywords

Navigation