Log in

Gaussian Process Regression Technique to Estimate the Pile Bearing Capacity

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

A commonly-encountered problem in foundation design is the reliable prediction of the pile bearing capacity (PBC). This study is planned to propose a feasible soft computing technique in this field i.e.; the Gaussian process regression (GPR) for the PBC estimation. The established database includes 296 number of dynamic pile load test in the field where the most influential factors on the PBC were selected as input variables. Several GPR models were designed and built. These models were assessed using three performance indices namely value account for (VAF), coefficient of determination (R2) and system error. To have a comparison, a genetic algorithm-based artificial neural network (GA-based ANN) model was also employed. It was found that the GPR-based model with VAF value of 86.41%, R2 of 0.84 and system error of 0.2006 is capable enough to predict the PBC and outperforms the GA-based ANN model. The results showed that the GPR can be utilized as a practical tool for the PBC estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Momeni, E.; Nazir, R.; Armaghani, D.J.; Maizir, H.: Application of artificial neural network for predicting shaft and tip resistances of concrete piles. Earth Sci. Res. J. 19, 85–93 (2015)

    Article  Google Scholar 

  2. Mayerhof, G.G.: Bearing capacity and settlemtn of pile foundations. J. Geotech. Geoenviron. Eng. 102, 196–228 (1976)

    Google Scholar 

  3. Momeni, E.; Maizir, H.; Gofar, N.; Nazir, R.: Comparative study on prediction of axial bearing capacity of driven piles in granular materials. J. Teknol. Sci. Eng. 61, 15–20 (2013). https://doi.org/10.11113/jt.v61.1777

    Article  Google Scholar 

  4. Milad, F.; Kamal, T.; Nader, H.; Erman, O.E.: New method for predicting the ultimate bearing capacity of driven piles by using Flap number. KSCE J. Civ. Eng. 19, 611–620 (2015)

    Article  Google Scholar 

  5. Nazir, R.; Momeni, E.; Gofar, N.; Maizir, H.: Numerical Modelling of skin resistance distribution with depth in driven pile. Electron. J. Geotech. Eng. 18, 2477–2488 (2013)

    Google Scholar 

  6. Rausche, F.; Goble, G.G.; Likins Jr.; G.E.: Dynamic determination of pile capacity. J. Geotech. Eng. 111, 367–383 (1985)

    Article  Google Scholar 

  7. Dowlatshahi, M.B.; Derhami, V.; Nezamabadi-pour, H.: Ensemble of filter-based rankers to guide an epsilon-greedy swarm optimizer for high-dimensional feature subset selection. Information. 8, 152 (2017)

    Article  Google Scholar 

  8. Dowlatshahi, M.B.; Derhami, V.; Nezamabadi-pour, H.: A novel three-stage filter-wrapper framework for miRNA subset selection in cancer classification. In: Informatics, Multidisciplinary Digital Publishing Institute, p. 13 (2018)

  9. Paniri, M.; Dowlatshahi, M.B.; Nezamabadi-pour, H.: MLACO: a multi-label feature selection algorithm based on ant colony optimization. Knowl. Based Syst. 192, 105285 (2020)

    Article  Google Scholar 

  10. Hashemi, A.; Dowlatshahi, M.B.; Nezamabadi-pour, H.: MGFS: a multi-label graph-based feature selection algorithm via PageRank centrality. Expert Syst. Appl. 142, 113024 (2020)

    Article  Google Scholar 

  11. Omidinasab, F.; Goodarzimehr, V.: A Hybrid Particle Swarm Optimization and Genetic Algorithm for truss structures with discrete variables. J. Appl. Comput. Mech. 6, 593–604 (2020)

    Google Scholar 

  12. Armaghani, D.J.; Asteris, P.G.; Askarian, B.; Hasanipanah, M.; Tarinejad, R.; Van Huynh, V.: Examining hybrid and single SVM models with different kernels to predict rock brittleness. Sustainability. 12, 2229 (2020)

    Article  Google Scholar 

  13. Armaghani, D.J.; Asteris, P.G.; Fatemi, S.A.; Hasanipanah, M.; Tarinejad, R.; Rashid, A.S.A.; Van Huynh, V.: On the use of neuro-swarm system to forecast the pile settlement. Appl. Sci. 10, 1904 (2020)

    Article  Google Scholar 

  14. Asteris, P.G.; Mokos, V.G.: Concrete compressive strength using artificial neural networks. Neural Comput. Appl. (2019). https://doi.org/10.1007/s00521-019-04663-2

    Article  Google Scholar 

  15. Sarir, P.; Chen, J.; Asteris, P.G.; Armaghani, D.J.; Tahir, M.M.: Develo** GEP tree-based, neuro-swarm, and whale optimization models for evaluation of bearing capacity of concrete-filled steel tube columns. Eng. Comput. (2019). https://doi.org/10.1007/s00366-019-00808-y

    Article  Google Scholar 

  16. Cavaleri, L.; Asteris, P.G.; Psyllaki, P.P.; Douvika, M.G.; Skentou, A.D.; Vaxevanidis, N.M.: Prediction of surface treatment effects on the tribological performance of tool steels using artificial neural networks. Appl. Sci. 9, 2788 (2019)

    Article  Google Scholar 

  17. Asteris, P.G.; Nozhati, S.; Nikoo, M.; Cavaleri, L.; Nikoo, M.: Krill herd algorithm-based neural network in structural seismic reliability evaluation. Mech. Adv. Mater. Struct. 26, 1–8 (2018)

    Google Scholar 

  18. Huang, L.; Asteris, P.G.; Koopialipoor, M.; Armaghani, D.J.; Tahir, M.M.: Invasive weed optimization technique-based ANN to the prediction of rock tensile strength. Appl. Sci. 9, 5372 (2019)

    Article  Google Scholar 

  19. Armaghani, D.J.; Hatzigeorgiou, G.D.; Karamani, C.; Skentou, A.; Zoumpoulaki, I.; Asteris, P.G.: Soft computing-based techniques for concrete beams shear strength. Proc. Struct. Integr. 17, 924–933 (2019)

    Article  Google Scholar 

  20. Armaghani, D.J.; Mirzaei, F.; Shariati, M.; Trung, N.T.; Shariati, M.; Trnavac, D.: Hybrid ANN-based techniques in predicting cohesion of sandy-soil combined with fiber. Geomech. Eng. 20, 191–205 (2020)

    Google Scholar 

  21. Armaghani, D.J.; Mohamad, E.T.; Narayanasamy, M.S.; Narita, N.; Yagiz, S.: Development of hybrid intelligent models for predicting TBM penetration rate in hard rock condition. Tunn. Undergr. Sp. Technol. 63, 29–43 (2017). https://doi.org/10.1016/j.tust.2016.12.009

    Article  Google Scholar 

  22. Armaghani, D.J.; Koopialipoor, M.; Marto, A.; Yagiz, S.: Application of several optimization techniques for estimating TBM advance rate in granitic rocks. J. Rock Mech. Geotech. Eng. (2019). https://doi.org/10.1016/j.jrmge.2019.01.002

    Article  Google Scholar 

  23. Harandizadeh, H.; Armaghani, D.J.; Mohamad, E.T.: Development of fuzzy-GMDH model optimized by GSA to predict rock tensile strength based on experimental datasets. Neural Comput. Appl. (2020). https://doi.org/10.1007/s00521-020-04803-z

    Article  Google Scholar 

  24. Naghipour, M.; Niak, K.M.; Shariati, M.; Toghroli, A.: Effect of progressive shear punch of a foundation on a reinforced concrete building behavior. Steel Compos. Struct. 35, 279–294 (2020)

    Google Scholar 

  25. Bunawan, A.R.; Momeni, E.; Armaghani, D.J.; Rashid, A.S.A.: Experimental and intelligent techniques to estimate bearing capacity of cohesive soft soils reinforced with soil-cement columns. Measurement 124, 529–538 (2018)

    Article  Google Scholar 

  26. Armaghani, D.J.; Mohamad, E.T.; Momeni, E.; Monjezi, M.; Narayanasamy, M.S.: Prediction of the strength and elasticity modulus of granite through an expert artificial neural network. Arab. J. Geosci. 9, 48 (2016)

    Article  Google Scholar 

  27. Armaghani, D.; Momeni, E.; Abad, S.: Feasibility of ANFIS model for prediction of ground vibrations resulting from quarry blasting. Environ. Earth Sci. 74, 2845–2860 (2015)

    Article  Google Scholar 

  28. Zhou, J.; Li, X.; Mitri, H.S.: Comparative performance of six supervised learning methods for the development of models of hard rock pillar stability prediction. Nat. Hazards. 79, 291–316 (2015)

    Article  Google Scholar 

  29. Zhou, J.; Li, E.; Yang, S.; Wang, M.; Shi, X.; Yao, S.; Mitri, H.S.: Slope stability prediction for circular mode failure using gradient boosting machine approach based on an updated database of case histories. Saf. Sci. 118, 505–518 (2019)

    Article  Google Scholar 

  30. Zhou, J.; Shi, X.; Li, X.: Utilizing gradient boosted machine for the prediction of damage to residential structures owing to blasting vibrations of open pit mining. J. Vib. Control. 22, 3986–3997 (2016)

    Article  Google Scholar 

  31. Asteris, P.G.; Apostolopoulou, M.; Skentou, A.D.; Moropoulou, A.: Application of artificial neural networks for the prediction of the compressive strength of cement-based mortars. Comput. Concr. 24, 329–345 (2019)

    Google Scholar 

  32. Ghanizadeh, A.R.; Abbaslou, H.; Amlashi, A.T.; Alidoust, P.: Modeling of bentonite/sepiolite plastic concrete compressive strength using artificial neural network and support vector machine. Front. Struct. Civ. Eng. 13, 215–239 (2019)

    Article  Google Scholar 

  33. Reddy, T.C.S.: Predicting the strength properties of slurry infiltrated fibrous concrete using artificial neural network. Front. Struct. Civ. Eng. 12, 490–503 (2018)

    Article  Google Scholar 

  34. Chen, R.; Zhang, P.; Wu, H.; Wang, Z.; Zhong, Z.: Prediction of shield tunneling-induced ground settlement using machine learning techniques. Front. Struct. Civ. Eng. 13, 1363–1378 (2019)

    Article  Google Scholar 

  35. Safa, M.; Maleka, A.; Arjomand, M.-A.; Khorami, M.; Shariati, M.: Strain rate effects on soil-geosynthetic interaction in fine-grained soil. Geomech. Eng. 19, 533 (2019)

    Google Scholar 

  36. Singh, T.; Pal, M.; Arora, V.K.: Modeling oblique load carrying capacity of batter pile groups using neural network, random forest regression and M5 model tree. Front. Struct. Civ. Eng. 13, 674–685 (2019)

    Article  Google Scholar 

  37. Ismail, A.: ANN-based empirical modelling of pile behaviour under static compressive loading. Front. Struct. Civ. Eng. 12, 594–608 (2018)

    Article  Google Scholar 

  38. Asteris, P.G.; Nikoo, M.: Artificial bee colony-based neural network for the prediction of the fundamental period of infilled frame structures. Neural Comput. Appl. (2019). https://doi.org/10.1007/s00521-018-03965-1

    Article  Google Scholar 

  39. Asteris, P.G.; Armaghani, D.J.; Hatzigeorgiou, G.D.; Karayannis, C.G.; Pilakoutas, K.: Predicting the shear strength of reinforced concrete beams using Artificial Neural Networks. Comput. Concr. 24, 469–488 (2019)

    Google Scholar 

  40. Momeni, E.; Poormoosavian, M.; Mahdiyar, A.; Fakher, A.: Evaluating random set technique for reliability analysis of deep urban excavation using Monte Carlo simulation. Comput. Geotech. 100, 203–215 (2018)

    Article  Google Scholar 

  41. Li, E.; Zhou, J.; Shi, X.; Armaghani, D.J.; Yu, Z.; Chen, X.; Huang, P.: Develo** a hybrid model of salp swarm algorithm-based support vector machine to predict the strength of fiber-reinforced cemented paste backfill. Eng. Comput. (2020). https://doi.org/10.1007/s00366-020-01014-x

    Article  Google Scholar 

  42. Shariati, M.; Azar, S.M.; Arjomand, M.-A.; Tehrani, H.S.; Daei, M.; Safa, M.: Comparison of dynamic behavior of shallow foundations based on pile and geosynthetic materials in fine-grained clayey soils. Geomech. Eng. 19, 473 (2019)

    Google Scholar 

  43. Safa, M., Sari, P.A., Shariati, M., Suhatril, M., Trung, N.T., Wakil, K., Khorami, M.: Development of neuro-fuzzy and neuro-bee predictive models for prediction of the safety factor of eco-protection slopes. Phys. A Stat. Mech. Appl. 550, 124046 (2020)

    Article  Google Scholar 

  44. Shariati, M.; Azar, S.M.; Arjomand, M.-A.; Tehrani, H.S.; Daei, M.; Safa, M.: Evaluating the impacts of using piles and geosynthetics in reducing the settlement of fine-grained soils under static load. Geomech. Eng. 20, 87–101 (2020)

    Google Scholar 

  45. Suhatril, M.; Osman, N.; Sari, P.A.; Shariati, M.; Marto, A.: Significance of surface eco-protection techniques for cohesive soils slope in Selangor, Malaysia. Geotech. Geol. Eng. 37, 2007–2014 (2019)

    Article  Google Scholar 

  46. Zhou, J.; Li, X.; Mitri, H.S.: Evaluation method of rockburst: state-of-the-art literature review. Tunn. Undergr. Sp. Technol. 81, 632–659 (2018)

    Article  Google Scholar 

  47. Duan, J.; Asteris, P.G.; Nguyen, H.; Bui, X.-N.; Moayedi, H.: A novel artificial intelligence technique to predict compressive strength of recycled aggregate concrete using ICA-XGBoost model. Eng. Comput. (2020). https://doi.org/10.1007/s00366-020-01003-0

    Article  Google Scholar 

  48. Fatehnia, M.; Amirinia, G.: A review of Genetic Programming and Artificial Neural Network applications in pile foundations. Int. J. Geo-Eng. 9, 2 (2018)

    Article  Google Scholar 

  49. Luo, Z.; Hasanipanah, M.; Amnieh, H.B.; Brindhadevi, K.; Tahir, M.M.: GA-SVR: a novel hybrid data-driven model to simulate vertical load capacity of driven piles. Eng. Comput. (2019). https://doi.org/10.1007/s00366-019-00858-2

    Article  Google Scholar 

  50. Harandizadeh, H.; Armaghani, D.J.; Khari, M.: A new development of ANFIS–GMDH optimized by PSO to predict pile bearing capacity based on experimental datasets. Eng. Comput. (2019). https://doi.org/10.1007/s00366-019-00849-3

    Article  Google Scholar 

  51. Chen, W.; Sarir, P.; Bui, X.-N.; Nguyen, H.; Tahir, M.M.; Armaghani, D.J.: Neuro-genetic, neuro-imperialism and genetic programing models in predicting ultimate bearing capacity of pile. Eng. Comput. (2019). https://doi.org/10.1007/s00366-019-00752-x

    Article  Google Scholar 

  52. Momeni, E.; Nazir, R.; Armaghani, D.J.; Maizir, H.: Prediction of pile bearing capacity using a hybrid genetic algorithm-based ANN. Measurement 57, 122–131 (2014)

    Article  Google Scholar 

  53. Shaik, S.; Krishna, K.S.R.; Abbas, M.; Ahmed, M.; Mavaluru, D.: Applying several soft computing techniques for prediction of bearing capacity of driven piles. Eng. Comput. 35, 1463–1474 (2019)

    Article  Google Scholar 

  54. Mohanty, R.; Suman, S.; Das, S.K.: Prediction of vertical pile capacity of driven pile in cohesionless soil using artificial intelligence techniques. Int. J. Geotech. Eng. 12, 1–8 (2016)

    Google Scholar 

  55. Samui, P.: Prediction of pile bearing capacity using support vector machine. Int. J. Geotech. Eng. 5, 95–102 (2011)

    Article  Google Scholar 

  56. Muduli, P.K.; Das, S.K.; Das, M.R.: Prediction of lateral load capacity of piles using extreme learning machine. Int. J. Geotech. Eng. 7, 388–394 (2013)

    Article  Google Scholar 

  57. Suman, S.; Das, S.K.; Mohanty, R.: Prediction of friction capacity of driven piles in clay using artificial intelligence techniques. Int. J. Geotech. Eng. 10, 469–475 (2016)

    Article  Google Scholar 

  58. Armaghani, D.J.; Faradonbeh, R.S.; Rezaei, H.; Rashid, A.S.A.; Amnieh, H.B.: Settlement prediction of the rock-socketed piles through a new technique based on gene expression programming. Neural Comput. Appl. 29, 1115–1125 (2016). https://doi.org/10.1007/s00521-016-2618-8

    Article  Google Scholar 

  59. Jebur, A.A.; Atherton, W.; Al Khaddar, R.M.; Loffill, E.: Artificial neural network (ANN) approach for modelling of pile settlement of open-ended steel piles subjected to compression load. Eur. J. Environ. Civ. Eng. 1–23 (2018)

  60. Nazir, R.; Momeni, E.; Marsono, K.; Prediction of bearing capacity for thin-wall spread foundations using ICA-ANN predictive model. In: Proc. Int. Conf. Civil, Struct. Transp. Eng. Ottawa, Ontario–May, pp. 4–5 (2015)

  61. Acharyya, R.; Dey, A.: Assessment of bearing capacity for strip footing located near slo** surface considering ANN model. Neural Comput. Appl. 31, 8087–8100 (2019)

    Article  Google Scholar 

  62. Harandizadeh, H.; Toufigh, M.M.; Toufigh, V.: Application of improved ANFIS approaches to estimate bearing capacity of piles. Soft Comput. 23, 9537–9549 (2019). https://doi.org/10.1007/s00500-018-3517-

    Article  Google Scholar 

  63. Rezaei, H.; Nazir, R.; Momeni, E.: Bearing capacity of thin-walled shallow foundations: an experimental and artificial intelligence-based study. J. Zhejiang Univ. A. 17, 273–285 (2016)

    Article  Google Scholar 

  64. Momeni, E.; Armaghani, D.J.; Fatemi, S.A.; Nazir, R.: Prediction of bearing capacity of thin-walled foundation: a simulation approach. Eng. Comput. 34, 319–327 (2018)

    Article  Google Scholar 

  65. Armaghani, D.J.; Raja, R.S.N.S.B.; Faizi, K.; Rashid, A.S.A.: Develo** a hybrid PSO–ANN model for estimating the ultimate bearing capacity of rock-socketed piles. Neural Comput. Appl. 28, 391–405 (2017)

    Article  Google Scholar 

  66. Goh, A.T.C.: Back-propagation neural networks for modeling complex systems. Artif. Intell. Eng. 9, 143–151 (1995)

    Article  Google Scholar 

  67. Goh, A.T.C.: Pile driving records reanalyzed using neural networks. J. Geotech. Eng. 122, 492–495 (1996)

    Article  Google Scholar 

  68. Marto, A.; Hajihassani, M.; Momeni, E.: Bearing capacity of shallow foundation’s prediction through hybrid artificial neural networks. In: Appl. Mech. Mater.; Trans Tech Publ, pp. 681–686 (2014)

  69. Benali, A.; Hachama, M.; Bounif, A.; Nechnech, A.; Karray, M.: A TLBO-optimized artificial neural network for modeling axial capacity of pile foundations. Eng. Comput. (2019). https://doi.org/10.1007/s00366-019-00847-5

    Article  Google Scholar 

  70. Soleimanbeigi, A.; Hataf, N.: Prediction of settlement of shallow foundations on reinforced soils using neural networks. Geosynth. Int. 13, 161–170 (2006)

    Article  Google Scholar 

  71. Padmini, D.; Ilamparuthi, K.; Sudheer, K.P.: Ultimate bearing capacity prediction of shallow foundations on cohesionless soils using neurofuzzy models. Comput. Geotech. 35, 33–46 (2008)

    Article  Google Scholar 

  72. Wardani, S.P.R.; Surjandari, N.S.; Jajaputra, A.A.: Analysis of ultimate bearing capacity of single pile using the artificial neural networks approach: a case study. In: Proc.; 18th Int. Conf. Soil Mech. Geotech. Engrg.; Paris, Fr.; pp. 837–840 (2013)

  73. Ornek, M.; Laman, M.; Demir, A.; Yildiz, A.: Prediction of bearing capacity of circular footings on soft clay stabilized with granular soil. Soils Found. 52, 69–80 (2012)

    Article  Google Scholar 

  74. Kiefa, M.A.A.: General regression neural networks for driven piles in cohesionless soils. J. Geotech. Geoenviron. Eng. 124, 1177–1185 (1998)

    Article  Google Scholar 

  75. Nawari, N.O.; Liang, R.; Nusairat, J.: Artificial intelligence techniques for the design and analysis of deep foundations. Electron. J. Geotech. Eng. 4, 1–21 (1999)

    Google Scholar 

  76. Pal, M.; Deswal, S.: Modeling pile capacity using support vector machines and generalized regression neural network. J. Geotech. Geoenviron. Eng. 134, 1021–1024 (2008)

    Article  Google Scholar 

  77. Shahin, M.A.: Intelligent computing for modeling axial capacity of pile foundations. Can. Geotech. J. 47, 230–243 (2010)

    Article  Google Scholar 

  78. Shahin, M.A.; Jaksa, M.B.: Intelligent computing for predicting axial capacity of drilled shafts. In: Contemp. Top. Situ Testing, Anal. Reliab. Found.; pp. 26–33 (2009)

  79. Mahesh, P.: Modeling pile capacity using generalized regression neural network. In: Proc.; Indian Geotech. Conf. Kochi, India, No. N-027, pp. 811–814 (2011)

  80. Jianbin, Z.; Jiewen, T.; Yongqiang, S.: An ANN model for predicting level ultimate bearing capacity of PHC pipe pile. In: Earth Sp. 2010 Eng. Sci. Constr. Oper. Challenging Environ.; pp. 3168–3176 (2010)

  81. Benali, A, Nechnech, A.: Prediction of the pile capacity in purely coherent soils using the approach of the artificial neural networks. In: Int. Semin. Innov. Valorization Civ. Eng. Constr. Mater. Rabat, Morocco, pp. 23–25 (2011)

  82. Moayedi, H.; Hayati, S.: Artificial intelligence design charts for predicting friction capacity of driven pile in clay. Neural Comput. Appl. 31, 7429–7445 (2019)

    Article  Google Scholar 

  83. ASTM D 4945-13: Standard test method for high strain testing of piles, American Society for Testing and Materials (2013)

  84. Goble, G.G.; Rausche, F.; Moses, F.: Dynamics Studies on the Bearing Capacity of piles: Final Report to the Ohio Department of Highways, Cleveland, Ohio Case West. Reserv. Univ. (1970)

  85. Fellenius, B.H.: Wave equation analysis and dynamic monitoring. Deep Found J. 1, 49–55 (1984)

    Google Scholar 

  86. Williams, C.K.I.; Rasmussen, C.E.: Gaussian processes for machine learning. MIT Press, Cambridge (2006)

    MATH  Google Scholar 

  87. Li, J.J.; Jutzeler, A.; Faltings, B.; Winter, S.; Rizos, C.: Estimating urban ultrafine particle distributions with gaussian process models. Res. Locate 14, 145–153 (2014)

    Article  Google Scholar 

  88. Kang, F.; Han, S.; Salgado, R.; Li, J.: System probabilistic stability analysis of soil slopes using Gaussian process regression with Latin hypercube sampling. Comput. Geotech. 63, 13–25 (2015)

    Article  Google Scholar 

  89. Snelson, E.L.: Flexible and efficient Gaussian process models for machine learning. PhD thesis, Gatsby Computational Neuroscience Unit, University College London (2007)

  90. Dowlatshahi, M.B.; Nezamabadi-Pour, H.: GGSA: a grou** gravitational search algorithm for data clustering. Eng. Appl. Artif. Intell. 36, 114–121 (2014)

    Article  Google Scholar 

  91. Swingler, K.: Applying neural networks: a practical guide. Academic Press, New York (1996)

    Google Scholar 

  92. Armaghani, D.J.; Mohamad, E.T.; Momeni, E.; Narayanasamy, M.S.: An adaptive neuro-fuzzy inference system for predicting unconfined compressive strength and Young’s modulus: a study on Main Range granite. Bull. Eng. Geol. Environ. 74, 1301–1319 (2015)

    Article  Google Scholar 

  93. Mohamad, E.T.; Armaghani, D.J.; Momeni, E.; Yazdavar, A.H.; Ebrahimi, M.: Rock strength estimation: a PSO-based BP approach. Neural Comput. Appl. 30, 1635–1646 (2018)

    Article  Google Scholar 

  94. Momeni, E.; Armaghani, D.J.; Hajihassani, M.; Amin, M.F.M.: Prediction of uniaxial compressive strength of rock samples using hybrid particle swarm optimization-based artificial neural networks. Measurement 60, 50–63 (2015)

    Article  Google Scholar 

  95. Liu, J.; Yan, K.; Zhao, X.; Hu, Y.: Prediction of autogenous shrinkage of concretes by support vector machine. Int. J. Pavement Res. Technol. 9, 169–177 (2016)

    Article  Google Scholar 

  96. Moore, C.J.; Chua, A.J.K.; Berry, C.P.L.; Gair, J.R.: Fast methods for training Gaussian processes on large datasets. R. Soc. Open Sci. 3, 160125 (2016)

    Article  MathSciNet  Google Scholar 

  97. R. MATLAB, version 9.4. 0.813654 (R2018a), MathWorks R Natick, MA, USA (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehsan Momeni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Momeni, E., Dowlatshahi, M.B., Omidinasab, F. et al. Gaussian Process Regression Technique to Estimate the Pile Bearing Capacity. Arab J Sci Eng 45, 8255–8267 (2020). https://doi.org/10.1007/s13369-020-04683-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04683-4

Keywords

Navigation