Log in

Alignment and Vibration Responses of High-Speed Alternator Couplings on Micro Gas Turbine

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

New type of shaft-inside-shaft friction high-speed power turbine coupling was investigated. Experimental test rig was developed to evaluate the new coupling (case C) and compare its performance with conventional bush couplings without absorber pads (case A) and with absorber pads (case B). Two accelerometers were used for the vibration analysis, and for each case, signals were recorded for the angular vibration on the alternator casing and for displacement axial vibration on the platform. Vibration signals were analysed through the fast Fourier-transform frequency spectrum in the range of 0–2.5 kHz. Higher shaft speed of 13,037 rpm was achieved with the new coupling compared to 6885 and 8056 rpm for cases A and B, respectively, indicating significant reduction in friction losses. Unbalance, looseness and misalignment faults were analysed through the harmonic frequencies 1X-5X for the three cases. The severity of misalignment was examined by the 2X/1X ratio on the alternator and the platform. The new coupling suffered from high misalignment at low rotating speeds, but showed superior performance above 4000 rpm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Enagi, I.I.; Al-attab, K.A.; Zainal, Z.A.: Liquid biofuels utilization for gas turbines: a review. Renew. Sustain. Energy Rev. 90, 43–55 (2018). https://doi.org/10.1016/j.rser.2018.03.006

    Article  Google Scholar 

  2. Al-attab, K.A.; Zainal, Z.A.: Design and performance of a pressurized cyclone combustor (PCC) for high and low heating value gas combustion. Appl. Energy 88, 1084–1095 (2010). https://doi.org/10.1016/j.apenergy.2010.10.041

    Article  Google Scholar 

  3. Sim, K.; Koo, B.; Kim, C.H.; Kim, T.H.: Development and performance measurement of micro-power pack using micro-gas turbine driven automotive alternators. Appl. Energy 102, 309–319 (2013). https://doi.org/10.1016/j.apenergy.2012.07.014

    Article  Google Scholar 

  4. Al-attab, K.A.; Zainal, Z.A.: Performance of a biomass fueled two-stage micro gas turbine (MGT) system with hot air production heat recovery unit. Appl. Therm. Eng. 70, 61–70 (2014). https://doi.org/10.1016/j.applthermaleng.2014.04.030

    Article  Google Scholar 

  5. Abboud, D.; Antoni, J.; Sieg-Zieba, S.; Eltabach, M.: Envelope analysis of rotating machine vibrations in variable speed conditions: a comprehensive treatment. Mech. Syst. Signal Process. 84, 200–226 (2017). https://doi.org/10.1016/j.ymssp.2016.06.033

    Article  Google Scholar 

  6. Feng, K.; Borghesani, P.; Smith, W.A.; Randall, R.B.; Chin, Z.Y.; Ren, J.; Peng, Z.: Vibration-based updating of wear prediction for spur gears. Wear 426–427, 1410–1415 (2019). https://doi.org/10.1016/j.wear.2019.01.017

    Article  Google Scholar 

  7. Zheng, R.; Chen, H.; Vandepitte, D.; Gallas, S.; Zhang, B.: Generation of sine on random vibrations for multi-axial fatigue tests. Mech. Syst. Signal Process. 126, 649–661 (2019). https://doi.org/10.1016/j.ymssp.2019.02.046

    Article  Google Scholar 

  8. Tuckmantel, F.W.; Cavalca, K.L.: Vibration signatures of a rotor-coupling-bearing system under angular misalignment. Mech. Mach. Theory 133, 559–583 (2019). https://doi.org/10.1016/j.mechmachtheory.2018.12.014

    Article  Google Scholar 

  9. **a, Y.; Pang, J.; Yang, L.; Zhao, Q.; **anwu Yang, X.: Study on vibration response and orbits of misaligned rigid rotors connected by hexangular flexible coupling. Appl. Acoust. 155, 286–296 (2019). https://doi.org/10.1016/j.apacoust.2019.05.022

    Article  Google Scholar 

  10. Li, C.; She, H.; Tang, Q.; Wen, B.: The coupling vibration characteristics of a flexible shaft-disk-blades system with mistuned features. Appl. Math. Model. 67, 557–572 (2019). https://doi.org/10.1016/j.apm.2018.09.041

    Article  MathSciNet  MATH  Google Scholar 

  11. She, H.; Li, C.; Tang, Q.; Wen, B.: The investigation of the coupled vibration in a flexible-disk blades system considering the influence of shaft bending vibration. Mech. Syst. Signal Process. 111, 545–569 (2018). https://doi.org/10.1016/j.ymssp.2018.03.044

    Article  Google Scholar 

  12. Al-Hadad, M.; McKee, K.K.; Howard, I.: Vibration characteristic responses due to transient mass loading on wind turbine blades. Eng. Fail. Anal. 102, 187–202 (2019). https://doi.org/10.1016/j.engfailanal.2019.04.006

    Article  Google Scholar 

  13. Poddar, S.; Tandon, N.: Detection of particle contamination in journal bearing using acoustic emission and vibration monitoring techniques. Tribol. Int. 134, 154–164 (2019). https://doi.org/10.1016/j.triboint.2019.01.050

    Article  Google Scholar 

  14. Chen, X.; Wei, H.; Deng, T.; He, Z.; Zhao, S.: Investigation of electromechanical coupling torsional vibration and stability in a high-speed permanent magnet synchronous motor driven system. Appl. Math. Model. 64, 235–248 (2018). https://doi.org/10.1016/j.apm.2018.07.030

    Article  MathSciNet  MATH  Google Scholar 

  15. Plöger, D.F.; Zech, P.; Rinderknecht, S.: Vibration signature analysis of commodity planetary gearboxes. Mech. Syst. Signal Process. 119, 255–265 (2019). https://doi.org/10.1016/j.ymssp.2018.09.014

    Article  Google Scholar 

  16. **, X.; Chen, K.; Ji, J.; Zhao, K.; Du, X.; Ma, H.: Intelligent vibration detection and control system of agricultural machinery engine. Measurement 145, 503–510 (2019). https://doi.org/10.1016/j.measurement.2019.05.059

    Article  Google Scholar 

  17. Ahirrao, N.S.; Bhosle, S.P.; Nehete, D.V.: Dynamic and vibration measurements in engines. Procedia Manuf. 20, 434–439 (2018). https://doi.org/10.1016/j.promfg.2018.02.063

    Article  Google Scholar 

  18. Hou, L.; Cao, S.; Gao, T.; Wang, S.: Vibration signal model of an aero-engine rotor-casing system with a transfer path effect and rubbing. Measurement 141, 429–441 (2019). https://doi.org/10.1016/j.measurement.2019.02.049

    Article  Google Scholar 

  19. Li, C.; Tang, Q.; **, C.; Zhong, B.; Wen, B.: Coupling vibration behaviors of drum-disk-shaft structures with elastic connection. Int. J. Mech. Sci. 155, 392–404 (2019). https://doi.org/10.1016/j.ijmecsci.2019.03.014

    Article  Google Scholar 

  20. Chaofeng, L.; Boqing, M.; Qiansheng, T.; Chenyang, X.; Bangchun, W.: Nonlinear vibrations analysis of rotating drum-disk coupling structure. J. Sound Vib. 420, 35–60 (2018). https://doi.org/10.1016/j.jsv.2018.01.019

    Article  Google Scholar 

  21. **ang, B.; Wong, W.O.: Vibration characteristics analysis of magnetically suspended rotor in flywheel energy storage system. J. Sound Vib. 444, 235–247 (2019). https://doi.org/10.1016/j.jsv.2018.12.037

    Article  Google Scholar 

  22. Chen, L.Q.; Li, X.; Lu, Z.Q.; Zhang, Y.W.; Ding, H.: Dynamic effects of weights on vibration reduction by a nonlinear energy sink moving vertically. J. Sound Vib. 451, 99–119 (2019). https://doi.org/10.1016/j.jsv.2019.03.005

    Article  Google Scholar 

  23. Yao, H.; Cao, Y.; Ding, Z.; Wen, B.: Using grounded nonlinear energy sinks to suppress lateral vibration in rotor systems. Mech. Syst. Signal Process. 124, 237–253 (2019). https://doi.org/10.1016/j.ymssp.2019.01.054

    Article  Google Scholar 

  24. Rasid, S.M.; Mizuno, T.; Ishino, Y.; Takasaki, M.; Hara, M.; Yamaguchi, D.: Design and control of active vibration isolation system with an active dynamic vibration absorber operating as accelerometer. J. Sound Vib. 438, 175–190 (2019). https://doi.org/10.1016/j.jsv.2018.09.037

    Article  Google Scholar 

  25. Wang, J.: Active control for vibration distribution with performance specification and constraints. Mech. Syst. Signal Process. 131, 112–125 (2019). https://doi.org/10.1016/j.ymssp.2019.05.047

    Article  Google Scholar 

  26. Wang, X.; Yang, B.: Transient vibration control using nonlinear convergence active vibration absorber for impulse excitation. Mech. Syst. Signal Process. 117, 425–436 (2019). https://doi.org/10.1016/j.ymssp.2018.07.038

    Article  Google Scholar 

  27. Lazarus, A.; Prabel, B.; Combescure, D.: A 3D finite element model for the vibration analysis of asymmetric rotating machines. J. Sound Vib. 329, 3780–3797 (2010). https://doi.org/10.1016/j.jsv.2010.03.029

    Article  Google Scholar 

  28. Combescure, D.; Lazarus, A.: Refined finite element modelling for the vibration analysis of large rotating machines: application to the gas turbine modular helium reactor power conversion unit. J. Sound Vib. 318, 1262–1280 (2008). https://doi.org/10.1016/j.jsv.2008.04.025

    Article  Google Scholar 

  29. Patel, T.H.; Darpe, A.K.: Vibration response of misaligned rotors. J. Sound Vib. 325, 609–628 (2009). https://doi.org/10.1016/j.jsv.2009.03.024

    Article  Google Scholar 

  30. Al-Hussain, K.M.: Dynamic stability of two rigid rotors connected by a flexible coupling with angular misalignment. J. Sound Vib. 266, 217–234 (2003). https://doi.org/10.1016/S0022460X(02)01627-9

    Article  Google Scholar 

  31. Sudhakar, G.N.; Sekhar, A.S.: Coupling misalignment in rotating machines: modelling effects and monitoring, Indian Institute of Technology Madras, Chennai. Noise Vib. Worldw. 40, 17–39 (2009). https://doi.org/10.1260/0957-4565.40.1.17

    Article  Google Scholar 

  32. Zhao, G.; Liu, Z.; Chen, F.: Meshing force of misaligned spline coupling and the influence on rotor system. Int. J. Rotating. Mach. Article ID: 321308 (2008). http://dx.doi.org/10.1155/2008/321308

  33. Piotrowski, J.: Shaft Alignment Handbook, 3rd edn. Google Books, CRC Press, Boca Raton (2006)

    Book  Google Scholar 

  34. Xut, R.D.; Marangoni, M.: Vibration analysis of a motor-flexible coupling-rotor system subject to misalignment and unbalance part II: experimental validation. J. Sound Vib. 176, 681–691 (1994). https://doi.org/10.1006/jsvi.1994.1406

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Universiti Sains Malaysia, RUI grant number: 1001/PMEKANIK/814282, for the financial support of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Al-attab.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Enagi, I.I., Al-attab, K.A. & Zainal, Z.A. Alignment and Vibration Responses of High-Speed Alternator Couplings on Micro Gas Turbine. Arab J Sci Eng 45, 5215–5225 (2020). https://doi.org/10.1007/s13369-020-04389-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04389-7

Keywords

Navigation