Log in

Brain Tumor Detection and Segmentation in MR Images Using Deep Learning

  • Research Article - Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Gliomas are the most infiltrative and life-threatening brain tumors with exceptionally quick development. Gliomas segmentation using computer-aided diagnosis is a challenging task, due to irregular shape and diffused boundaries of tumor with the surrounding area. Magnetic resonance imaging (MRI) is the most widely used method for imaging structures of interest in human brain. In this study, a deep learning-based method that uses different modalities of MRI is presented for the segmentation of brain tumor. The proposed hybrid convolutional neural network architecture uses patch-based approach and takes both local and contextual information into account, while predicting output label. The proposed network deals with over-fitting problem by utilizing dropout regularizer alongside batch normalization, whereas data imbalance problem is dealt with by using two-phase training procedure. The proposed method contains a preprocessing step, in which images are normalized and bias field corrected, a feed-forward pass through a CNN and a post-processing step, which is used to remove small false positives around the skull portion. The proposed method is validated on BRATS 2013 dataset, where it achieves scores of 0.86, 0.86 and 0.91 in terms of dice score, sensitivity and specificity for whole tumor region, improving results compared to the state-of-the-art techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Pereira, S.; Pinto, A.; Alves, V.; Silva, C.A.: Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans. Med. Imaging 35(5), 1240–1251 (2016)

    Article  Google Scholar 

  2. Bauer, S.; Wiest, R.; Nolte, L.-P.; Reyes, M.: A survey of MRI-based medical image analysis for brain tumor studies. Phys. Med. Biol. 58(13), R97 (2013)

    Article  Google Scholar 

  3. Rousseau, A.; Mokhtari, K.; Duyckaerts, C.: The 2007 who classification of tumors of the central nervous system—what has changed? Curr. Opin. Neurol. 21(6), 720–727 (2008)

    Article  Google Scholar 

  4. Tabatabai, G.; Stupp, R.; van den Bent, M.J.; Hegi, M.E.; Tonn, J.C.; Wick, W.; Weller, M.: Molecular diagnostics of gliomas: the clinical perspective. Acta Neuropathol. 120(5), 585–592 (2010)

    Article  Google Scholar 

  5. Zhao, X.; Yihong, W.; Song, G.; Li, Z.; Zhang, Y.; Fan, Y.: A deep learning model integrating FCNNs and CRFs for brain tumor segmentation. Med. Image Anal. 43, 98–111 (2018)

    Article  Google Scholar 

  6. Havaei, M.; Davy, A.; Warde-Farley, D.; Biard, A.; Courville, A.; Bengio, Y.; Pal, C.; Jodoin, P.-M.; Larochelle, H.: Brain tumor segmentation with deep neural networks. Med. Image Anal. 35, 18–31 (2017)

    Article  Google Scholar 

  7. Abbasi, S.; Pour, F.T.: A hybrid approach for detection of brain tumor in MRI images. In: 2014 21th Iranian Conference on Biomedical Engineering (ICBME), pp. 269–274 (2014)

  8. Kao, P.-Y.; Ngo, T.; Zhang, A.; Chen, J.; Manjunath, B.S.: Brain tumor segmentation and tractographic feature extraction from structural MR images for overall survival prediction (2018). ar**v preprint ar**v:1807.07716

  9. Farahani, K.; Menze, B.; Reyes, M.; Gerstner, E.; Kirby, J.; Kalpathy-Cramer, J.: Multimodal Brain Tumor Segmentation (BRATS 2013). http://martinos.org/qtim/miccai2013 (2013)

  10. Hussain, S.; Anwar, S.M.; Muhammad, M.: Brain tumor segmentation using cascaded deep convolutional neural network. In: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 1998–2001 (2017)

  11. Menze, BH.; Jakab, A.; Bauer, S.; Kalpathy-Cramer, J.; Farahani, K.; Kirby, J.; Burren, Y.; Porz, N.; Slotboom, J.; Wiest, R.; Lanczi, L.; Gerstner, E.; Weber, M.A.; Arbel, T.; Avants, B.B.; Ayache, N.; Buendia, P.; Collins, D.L.; Cordier, N.; Corso, J.J.; Criminisi, A.; Das, T.; Delingette, H.; Demiralp, Ç.; Durst, C.R.; Dojat, M.; Doyle, S.; Festa, J.; Forbes, F.; Geremia, E.; Glocker, B.; Golland, P.; Guo, X.; Hamamci, A.; Iftekharuddin, K.M.; Jena, R.; John, N.M.; Konukoglu, E.; Lashkari, D.; Mariz, J.A.; Meier, R.; Pereira, S.; Precup, D.; Price, S.J.; Raviv, T.R.; Reza, S.M.; Ryan, M.; Sarikaya, D.; Schwartz, L.; Shin, H.C.; Shotton, J.; Silva, C.A.; Sousa, N.; Subbanna, N.K.; Szekely, G.; Taylor, T.J.; Thomas, O.M.; Tustison, N.J.; Unal, G.; Vasseur, F.; Wintermark, M.; Ye, D.H.; Zhao, L.; Zhao, B.; Zikic, D.; Prastawa, M.; Reyes, M.; Van Leemput, K.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging. 34(10), 1993–2024 (2015)

  12. Bernal, J.; Kushibar, K.; Asfaw, D.S.; Valverde, S.; Oliver, A.; Martí, R.; Lladó, X.: Deep convolutional neural networks for brain image analysis on magnetic resonance imaging: a review. Artif. Intell. Med. 95, 64–81 (2018)

    Article  Google Scholar 

  13. Pinto, A.; Pereira, S.; Correia, H.; Oliveira, J.; Rasteiro, D.; Silva, C.A.: Brain tumour segmentation based on extremely randomized forest with high-level features. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3037–3040 (2015)

  14. Doyle, S.; Vasseur, F.; Dojat, M.; Forbes, F.: Fully automatic brain tumor segmentation from multiple MR sequences using hidden Markov fields and variational EM. Proc. NCI-MICCAI BRATS 1, 18–22 (2013)

    Google Scholar 

  15. Prastawa, M.; Bullitt, E.; Ho, S.; Gerig, G.: A brain tumor segmentation framework based on outlier detection. Med. Image Anal. 8(3), 275–283 (2004)

    Article  Google Scholar 

  16. Prastawa, M.; Bullitt, E.; Ho, S.; Gerig, G.: Robust estimation for brain tumor segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 530–537. Springer, New York (2003)

  17. Khotanlou, H.; Colliot, O.; Atif, J.; Bloch, I.: 3D brain tumor segmentation in MRI using fuzzy classification, symmetry analysis and spatially constrained deformable models. Fuzzy Sets Syst. 160(10), 1457–1473 (2009)

    Article  MathSciNet  Google Scholar 

  18. Popuri, K.; Cobzas, D.; Murtha, A.; Jägersand, M.: 3D variational brain tumor segmentation using Dirichlet priors on a clustered feature set. Int. J. Comput. Assist. Radiol. Surg. 7(4), 493–506 (2012)

    Article  Google Scholar 

  19. Kwon, D; Akbari, H; Da, X; Gaonkar, B; Davatzikos, C.: Multimodal brain tumor image segmentation using GLISTR. MICCAI Brain Tumor Segmentation (BraTS) Challenge Manuscripts, pp. 18–19 (2014)

  20. Parisot, Sarah; Duffau, Hugues; Chemouny, Stéphane; Paragios, Nikos.: Joint tumor segmentation and dense deformable registration of brain MR images. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 651–658. Springer, New York (2012)

  21. Hamamci, A.; Kucuk, N.; Karaman, K.; Engin, K.; Unal, G.: Tumor-cut: segmentation of brain tumors on contrast enhanced mr images for radiosurgery applications. IEEE Trans. Med. Imaging 31(3), 790–804 (2012)

    Article  Google Scholar 

  22. Kleesiek, J.; Biller, A.; Urban, G.; Kothe, U.; Bendszus, M.; Hamprecht, F.: Ilastik for multi-modal brain tumor segmentation. In: Proceedings of MICCAI 2013 Challenge on Multimodal Brain Tumor Segmentation (BRATS 2013) (2014)

  23. Subbanna, N.; Precup, D.; Arbel, T.: Iterative multilevel MRF leveraging context and voxel information for brain tumour segmentation in MRI. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 400–405 (2014).

  24. Webb, J.; Guimond, A.; Eldridge, P.; Chadwick, D.; Meunier, J.; Thirion, J.-P.; Roberts, N.: Automatic detection of hippocampal atrophy on magnetic resonance images. Magn. Reson. Imaging 17(8), 1149–1161 (1999)

    Article  Google Scholar 

  25. Smith, S.M.; Jenkinson, M.; Johansen-Berg, H.; Rueckert, D.; Nichols, T.E.; Mackay, C.E.; Watkins, K.E.; Ciccarelli, O.; Cader, M.Z.; Matthews, P.M.; et al.: Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31(4), 1487–1505 (2006)

    Article  Google Scholar 

  26. Binaghi, E.; Omodei, M.; Pedoia, V.; Balbi, S.; Lattanzi, D.; Monti, E..: Automatic segmentation of MR brain tumor images using support vector machine in combination with graph cut. In: IJCCI (NCTA), pp. 152–157 (2014)

  27. Sikka, K.; Sinha, N.; Singh, P.K.; Mishra, A.K.: A fully automated algorithm under modified FCM framework for improved brain MR image segmentation. Magn. Reson. Imaging 27(7), 994–1004 (2009)

    Article  Google Scholar 

  28. Zikic, D.; Glocker, B.; Konukoglu, E.; Criminisi, A.; Demiralp, C.; Shotton, J.; Thomas, O.; Das, T.; Jena, R.; Price, S.: Decision forests for tissue-specific segmentation of high-grade gliomas in multi-channel MR. In: Medical Image Computing and Computer-Assisted Intervention—MICCAI 2012, pp. 369–376 (2012)

  29. Gotz, M.; Weber, C.; Blocher, J.; Stieltjes, B.; Meinzer, H.-P.; Maier-Hein, K.: Extremely randomized trees based brain tumor segmentation. In: Proceedings of BRATS Challenge-MICCAI (2014)

  30. Menze, B.H.; Jakab, A.; Bauer, S.; Kalpathy-Cramer, J.; Farahani, K.; Kirby, J.; Burren, Y.; Porz, N.; Slotboom, J.; Wiest, R.; et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015)

    Article  Google Scholar 

  31. Bauer, S.; Nolte, L.-P.; Reyes, M.: Fully automatic segmentation of brain tumor images using support vector machine classification in combination with hierarchical conditional random field regularization. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 354–361. Springer, New York (2011).

  32. Yang, J.; Zhang, D.; Frangi, A.F.; Yang, J.: Two-dimensional PCA: a new approach to appearance-based face representation and recognition. IEEE Trans. Pattern Anal. Mach. Intell. 26(1), 131–137 (2004)

    Article  Google Scholar 

  33. Urban, G.; Bendszus, M.; Hamprecht, F.; Kleesiek, J.: Multi-modal brain tumor segmentation using deep convolutional neural networks. In: Proceedings of BRATS-MICCAI (2014)

  34. Beers, A.; Chang, K.; Brown, J.; Sartor, E.; Mammen, C.P.; Gerstner, E.; Rosen, B.; Kalpathy-Cramer, J.: Sequential 3D U-nets for biologically-informed brain tumor segmentation (2017). ar**v preprint ar**v:1709.02967

  35. Zikic, D.; Ioannou, Y.; Brown, M.; Criminisi, A.: Segmentation of brain tumor tissues with convolutional neural networks. In: Proceedings MICCAI-BRATS, pp. 36–39 (2014)

  36. Hu, J.; Mou, L.; Schmitt, A.; Zhu, X.X.: Fusionet: a two-stream convolutional neural network for urban scene classification using polsar and hyperspectral data. In: Urban Remote Sensing Event (JURSE), 2017 Joint, pp. 1–4 (2017)

  37. Hou, L.; Samaras, D.; Kurc, T.M.; Gao, Y.; Davis, J.E.; Saltz, J.H.: Patch-based convolutional neural network for whole slide tissue image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2424–2433 (2016)

  38. Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L.: Deeplab: Semantic image segmentation with deep convolutional nets, Atrous convolution, and fully connected CRFs (2016). ar**v preprint ar**v:1606.00915

  39. Jiang, J.; Yao, W.; Huang, M.; Yang, W.; Chen, W.; Feng, Q.: 3D brain tumor segmentation in multimodal MR images based on learning population- and patient-specific feature sets. Comput. Med. Imaging Graph. 37(7), 512–521 (2013)

    Article  Google Scholar 

  40. Rao, V.; Shari Sarabi, M.; Jaiswal, A.: Brain tumor segmentation with deep learning. In: MICCAI Multimodal Brain Tumor Segmentation Challenge (BraTS), pp. 56–59 (2015)

  41. Saouli, R.; Akil, M.; Kachouri, R.; et al.: Fully automatic brain tumor segmentation using end-to-end incremental deep neural networks in MRI images. Comput. Methods Programs Biomed. 166, 39–49 (2018)

    Article  Google Scholar 

  42. Tustison, N.J.; Avants, B.B.; Cook, P.A.; Zheng, Y.; Egan, A.; Yushkevich, P.A.; Gee, J.C.: N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging 29(6), 1310–1320 (2010)

    Article  Google Scholar 

  43. Krizhevsky, A.; Sutskever, I.; Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

  44. Van Ooyen, A.; Nienhuis, B.: Improving the convergence of the back-propagation algorithm. Neural Netw. 5(3), 465–471 (1992)

    Article  Google Scholar 

  45. Kamnitsas, K.; Ledig, C.; Newcombe, V.F.J.; Simpson, J.P.; Kane, A.D.; Menon, D.K.; Rueckert, D.; Glocker, B.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017)

    Article  Google Scholar 

  46. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  47. Charles, P.W.D.: Project title (2013). https://github.com/charlespwd/project-title

  48. Bottou, L.: Stochastic gradient descent tricks. In: Neural networks: Tricks of the Trade, pp. 421–436, Springer, New York (2012).

  49. Nesterov, Y.: Gradient methods for minimizing composite functions. Math. Program. 140(1), 125–161 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  50. Hussain, S.; Anwar, S.M.; Majid, M.: Segmentation of glioma tumors in brain using deep convolutional neural network. Neurocomputing 282, 248–261 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saddam Hussain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sajid, S., Hussain, S. & Sarwar, A. Brain Tumor Detection and Segmentation in MR Images Using Deep Learning. Arab J Sci Eng 44, 9249–9261 (2019). https://doi.org/10.1007/s13369-019-03967-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-03967-8

Keywords

Navigation