Log in

An Improved Localization Scheme Based on PMCL Method for Large-Scale Mobile Wireless Aquaculture Sensor Networks

  • Research Article - Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Localization is crucial to many applications in wireless sensor networks (WSNs) because measurement data or information exchanges happened in WSNs without location information are meaningless. Most localization schemes for mobile WSNs are based on Sequential Monte Carlo (SMC) algorithm. These SMC-based methods often suffer from too many iterations, sample impoverishment and less sample diversity, which leads to low sampling and filtering efficiency, and consequently low localization accuracy and high localization costs. In this paper, we propose an improved range-free localization scheme for mobile WSNs based on improved Population Monte Carlo localization (PMCL) method, accompanying with Hidden Terminal Couple scheme. A population of probability density functions is proposed to approximate the distribution of unknown locations based on a set of observations through an iterative importance sampling procedure. Behaviors are enhanced by adopting three improved methods to increase accuracy, enhance delay and save cost. Firstly, resampling, with importance weights, is introduced in PMCL method to avoid sample degeneracy. Secondly, twofold constraints, constraining the number of random samples in initialized step and constraining valid observations in resampling step, are proposed to decrease the number of iterations. Thirdly, mixture perspective is introduced to maintain the diversity of samples in resampling weighted process. Then, localization error, delay and consumption, especial delay, are predicted based on the statistic point of view, which takes mobile model of RWP into account. Moreover, performance comparisons of PMCL with other SMC-based schemes are also proposed. Simulation results show that delay of PMCL has some superiorities to that of other schemes, and accuracy and energy consumption is improved in some cases of less anchor rate and lower mobile velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aspnes, J.; Eren, T.; Goldenberg, D.K.; Stephen Morse, A.; Whiteley, W.; Yang, Y.R.; Anderson, B.D.O.; Belhumeur, P.N.: A theory of network localization. IEEE Trans. Mob. Comput. 5(12), 1663–1678 (2006)

    Article  Google Scholar 

  2. Yang, Z.; Liu, Y.H.: Understanding node localizability of wireless ad hoc and sensor networks. IEEE Trans. Mob. Comput. 11(8), 1249–1260 (2012)

    Article  Google Scholar 

  3. Mao, G.Q.; Fidan, B.; Anderson, B.D.O.: Wireless sensor network localization techniques. Comput. Netw. 51, 2529–2553 (2007)

    Article  MATH  Google Scholar 

  4. Chowdhurya, T.J.S.; Elkina, C.; Devabhaktunia, D.; Rawat, D.B.; Oluochc, J.: Advances on localization techniques for wireless sensor networks: a survey. Comput. Netw. 110(9), 284–305 (2016)

    Article  Google Scholar 

  5. Kumar, R.; Kumar, S.; Shukla, D.; Raw, R.S.; Kaiwartya, O.: Geometrical localization algorithm for three dimensional wireless sensor networks. Wirel. Pers. Commun. 79, 249–264 (2014)

    Article  Google Scholar 

  6. Tan, H.P.; Diamant, R.; Seah, W.K.G.; Waldmeyer, M.: A survey of techniques and challenges in underwater localization. Ocean Eng. 38, 1663–1676 (2011)

    Article  Google Scholar 

  7. Takemura, R.; Sakata, H.; Ishida, H.: Active chemical sampling system for underwater chemical source localization. J. Sens. 1, 1–11 (2016)

    Article  Google Scholar 

  8. Pace, S.; Frost, G.; Lachow, I.; Frelinger, D.; Fossum, D.; Wassem, D. K.; Pinto, M.: The global positioning system, chapter GPS history, chronology and budgets. RAND Corp. pp. 237–270 (1995)

  9. Cheon, J.; Hwang, H.; Jung, Y.: IEEE 802.15.4 Zigbee-based time-of-arrival estimation for wireless sensor networks. Sensors 16(2), 203 (2016)

    Article  Google Scholar 

  10. Rao, K.R.; Kumar, T.R.; Venkatnaryana, C.: Selection of anchor nodes in time of arrival for localization in wireless sensor networks. In: Proceedings of the International Conference on Soft Computing Systems, vol. 397, pp. 45–57 (2016)

  11. Boukerche, A.; Oliveira, H.A.B.; Nakamura, E.F.; Loureiro, A.A.F.: Localization systems for wireless sensor networks. IEEE Wirel. Commun. 14(6), 6–12 (2007)

    Article  Google Scholar 

  12. Pivato, P.; Palopoli, L.; Petri, D.: IEEE accuracy of RSS-based centroid localization algorithms in an indoor environment. IEEE Trans. Instrum. Meas. 60(10), 3451–3460 (2011)

    Article  Google Scholar 

  13. Benkic, K.; Malajner, M.; Planinsic, P.; Cucej, Z.: Using RSSI value for distance estimation in wireless sensor networks based on ZigBee. In: 15th International Conference on Systems, Signals and Image Processing, pp. 303–306 (2008)

  14. Hamdoun, S.; Rachedi, A.; Benslimane, A.: RSSI-based localisation algorithms using spatial diversity in wireless sensor networks. Int. J. Ad Hoc Ubiquitous Comput. 19(3–4), 157–167 (2015)

    Article  Google Scholar 

  15. **, R.C.; Che, Z.P.; Xu, H.; Wang, Z.; Wang, L.D.: An RSSI-based localization algorithm for outliers suppression in wireless sensor networks. Wirel. Netw. 21, 2561–2569 (2015)

    Article  Google Scholar 

  16. Farrag, M.; Abo-Zahhad, M.; Doss, M.M.; Fayez, J.V.: A new localization technique for wireless sensor networks using social network analysis. Arab. J. Sci. Eng. 42(8), 1–11 (2017)

    Google Scholar 

  17. Niculescu, D.; Nath, B.: Ad hoc positioning system (APS) using AOA. In: 22th Annual Joint Conference of the IEEE Computer and Communications, pp. 1734–1743. IEEE Societies (2003)

  18. Singh, A.; Kumar, S.; Kaiwartya, O.: A hybrid localization algorithm for wireless sensor networks. Procedia Comput. Sci. 57, 1432–1439 (2015)

    Article  Google Scholar 

  19. Singh, S.P.; Sharma, S.C.: Range free localization techniques in wireless sensor networks: a review. Procedia Comput. Sci. 57, 7–16 (2015)

    Article  Google Scholar 

  20. Stanoeva, A.; Filiposkac, S.; In, V.; Kocarev, L.: Cooperative method for wireless sensor network localization. Ad Hoc Netw. 40, 61–72 (2016)

    Article  Google Scholar 

  21. Bulusu, N.; Heidemann, J.; Estrin, D.: GPS-less low cost outdoor localization for very small devices. IEEE Pers. Commun. Mag. 7(5), 28–34 (2000)

    Article  Google Scholar 

  22. Doherty, L.; Pister, K.S.; El Ghaoui, L.: Convex position estimation in wireless Sensor networks. In: Proceedings of IEEE Twentieth Annual Joint Conference of the IEEE Computer and Communications Societies, vol. 3, pp. 1655–1663 (2001)

  23. Liu, Z.; Feng, X.; Zhang, J.J.; Li, T.; Wang, Y.L.: An improved GPSR algorithm based on energy gradient and APIT grid. J. Sens. 12, 1–7 (2015)

    Google Scholar 

  24. Nicuescu, D.; Nath, B.: DV based positioning in ad hoc networks. Telecommun. Syst. 22, 267–280 (2003)

    Article  Google Scholar 

  25. Han, G.J.; Chao, J.; Zhang, C.Y.; Shu, L.; Li, Q.W.: The impacts of mobility models on DV-hop based localization in mobile wireless sensor networks. J. Netw. Comput. Appl. 42, 70–79 (2014)

    Article  Google Scholar 

  26. Hu, L.X.; Evans, D.: Localization for mobile sensor networks. In: Proceeding MobiCom ’04 Proceedings of the 10th Annual International Conference on Mobile Computing and Networking, pp. 45–57 (2004)

  27. Handschin, J.E.: Monte Carlo techniques for prediction and filtering of non-linear stochastic processes. Automatica 4(6), 555–563 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  28. Thrun, S.; Fox, D.; Burgard, W.; Dellaert, F.: Robust Monte Carlo localization for mobile robots. Artif. Intell. 128(1–2), 99–141 (2001)

    Article  MATH  Google Scholar 

  29. Arulampalam, M.S.; Maskell, S.; Gordon, N.; Clapp, T.: A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. 50(2), 174–188 (2002)

    Article  Google Scholar 

  30. Shang, Y.; Ruml, W.; Zhang, Y.; Fromherz, M.: Localization from connectivity in sensor networks. IEEE Trans. Parallel Distrib. Syst. 15(11), 961–974 (2004)

    Article  Google Scholar 

  31. Baggio, A.; Langendoen, K.: Monte Carlo localization for mobile wireless sensor networks. Ad Hoc Netw. 6(5), 718–733 (2008)

    Article  Google Scholar 

  32. Sheu, J.P.; Hu, W.K.; Lin, J.C.: Distributed localization scheme for mobile sensor networks. IEEE Trans. Mob. Comput. 9(4), 516–526 (2010)

  33. Zhang, S.G.; Cao, J.N.; Chen, L.J.; Chen, D.X.: Accurate and energy-efficient range-free localization for mobile sensor networks. IEEE Trans. Mob. Comput. 9(6), 897–910 (2010)

    Article  Google Scholar 

  34. Wang, Z.; Wang, Y.L.; Ma, M.D.; Wu, J.G.: Efficient localization for mobile sensor networks based on constraint rules optimized Monte Carlo method. Comput. Netw. 57(14), 2788–2801 (2013)

    Article  Google Scholar 

  35. Mirebrahim, H.; Dehghan, M.: Monte Carlo localization of mobile sensor networks using the position information of neighbor nodes. Ad-Hoc Mob. Wirel. Netw. 5793, 270–283 (2009)

    Article  Google Scholar 

  36. Abu Znaid, A.M.A.; Idris, M.Y.I.; Wahab, A.W.A.: Low communication cost (LCC) scheme for localizing mobile wireless sensor networks. Wirel. Netw. 23(3), 737–747 (2017)

    Article  Google Scholar 

  37. Halder, S.; Ghosal, A.: A survey on mobility-assisted localization techniques in wireless sensor networks. J. Netw. Comput. Appl. 60, 82–94 (2016)

    Article  Google Scholar 

  38. Chowdhurya, T.J.S.; Elkina, C.; Devabhaktunia, D.; Rawat, D.B.; Oluochc, J.: Advances on localization techniques for wireless sensor networks: a survey. Comput. Netw. 110(9), 284–305 (2016)

    Article  Google Scholar 

  39. Abu Znaid, A.M.A.; Idris, M.Y.I.; Wahab, A.W.A.; Liana, K.Q.; Omar, A.M.: Sequential Monte Carlo localization methods in mobile wireless sensor networks: a review. J. Sens. 2017, 1–19 (2017)

    Article  Google Scholar 

  40. Zhu, J.P.; Lv, C.F.; Tao, Z.S.: Performance analyses and improvements for IEEE 802.15.4 CSMA/CA scheme in wireless multi-hop sensor networks based on HTC algorithm. Int. J. Distrib. Sens. Netw. 2013, 1–21 (2013)

    Google Scholar 

  41. Elvia, V.; Martino, L.; Luengo, D.; Bugallo, M.F.: Improving population Monte Carlo: alternative weighting and resampling schemes. Signal Process. 131(2107), 77–91 (2017)

    Article  Google Scholar 

  42. Cappe, O.; Guillin, A.; Marin, J.M.; Robert, C.P.: Population Monte Carlo. J. Comput. Graph. Stat. 13(4), 907–929 (2004)

    Article  MathSciNet  Google Scholar 

  43. Li, T.; Bolic, M.; Djuric, P.M.: Resampling methods for particle filtering: classification, implementation, and strategies. IEEE Signal Process. Mag. 32(3), 70–86 (2015)

    Article  Google Scholar 

  44. Alaybeyoglu, A.: An efficient Monte Carlo-based localization algorithm for mobile wireless sensor networks. Arab. J. Sci. Eng. 40, 1375–1384 (2015)

    Article  MathSciNet  Google Scholar 

  45. Rogerio, T.S.; Roberto, R.C.; Cecilio, P.; Renato, M.M.: BETA random waypoint mobility model for wireless network simulation. Ad Hoc Netw. 48(15), 93–100 (2016)

    Google Scholar 

  46. Knapp, C.H.; Carter, G.C.: The generalized correlation method for estimation of time delay. IEEE Trans. Acoust. Speech Signal Process. 24(4), 320–327 (1976)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian** Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, C., Zhu, J. & Tao, Z. An Improved Localization Scheme Based on PMCL Method for Large-Scale Mobile Wireless Aquaculture Sensor Networks. Arab J Sci Eng 43, 1033–1052 (2018). https://doi.org/10.1007/s13369-017-2871-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2871-x

Keywords

Navigation