Log in

Characteristics of Hydraulic Jump in U-Shaped Channels

  • Research Article - Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

A hydraulic jump is the rapid transition from a supercritical to subcritical flow. This transition is characterized by large-scale turbulence and energy dissipation. Despite the importance of understanding the hydraulic jump to design hydraulic structures, few studies have aimed on hydraulic jumps in U-shaped channels. In this paper, the 3D pattern of hydraulic jumps in U-shaped channels is studied numerically. The variations of the flow free surface are predicted using the volume of fluid scheme. Also, the flow field turbulence is simulated using the standard \(k-\varepsilon \) and RNG \(k-\varepsilon \) turbulence models. According to the numerical modeling results, the standard \(k-\varepsilon \) turbulence model estimates the flow characteristics with more accuracy. A comparison between the laboratory and numerical results shows that the numerical model simulates the flow field characteristics with good accuracy. For example, in the hydraulic jump model with a relative discharge \(({q=Q/{\sqrt{( {gD^{5}})}}})\) equal to 0.321 and a Froude number \(({{F}_1})\) equal to 4.85, the values of MAPE, RMSE and \({R}^{2}\) are calculated 7.617, 0.022 and 0.989, respectively. Next, 45 numerical models are simulated in different hydraulic conditions and some relationships are provided for calculating the sequent depth \(({{h_2 }/{h_1 }})\), hydraulic length \(({{L_\mathrm{j}}/{h_1}})\) and roller length \(({{L_\mathrm{r} }/{h_1}})\) ratios by analyzing their results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

\(A_{x}, A_{y}, A_{z}\) :

Fractional areas open to flow (−)

CDIS1:

Coefficient of production (−)

CDIS2:

Coefficient of decay (−)

CDIS3:

is coefficient of buoyancy (−)

D :

U-shaped channel diameter (L)

\(\mathrm{Diff}_\mathrm{T} \) :

Diffusion term (−)

\(\mathrm{Diff}_\varepsilon \) :

Diffusion of dissipation (−)

F :

Fluid volume fraction in a cell (−)

\(F_{1}\) :

Froude number at upstream of hydraulic jump (−)

\(f_{x},f_{y},f_{z}\) :

Viscous accelerations (−)

\(G_{x},G_{y},G_{z}\) :

Body accelerations (−)

\({G}_\mathrm{T}\) :

Turbulence production due to buoyancy effects (−)

g :

Acceleration gravity (L T\(^{-2}\))

\(k_\mathrm{T}\) :

Turbulence kinetic energy (L\(^{2}\) T\(^{-2}\))

\(L_\mathrm{j}\) :

Length of hydraulic jump (L)

\(L_\mathrm{r}\) :

Roller length (L)

p :

Pressure (M L\(^{-1}\) T\(^{-2}\))

\(P_\mathrm{T}\) :

Turbulent kinetic energy production (−)

Q :

Discharge in U-shaped channel (L\(^{3}\) T\(^{-1}\))

q :

Relative discharge (−)

R :

Mass source (−)

t :

Time (T)

u, v, w :

Velocity components (L T\(^{-1}\))

\(u_*\) :

Wall shear velocity (L T\(^{-1}\))

\(V_\mathrm{F}\) :

Fractional volume open to flow (−)

x, y, z :

Cartesian coordinate directions (L)

\(y_1 \) :

Distance of the cell center from the solid wall (L)

\(y^{+}\) :

Non-dimensional parameter (−)

\(h_{1}\) :

Depth of flow at upstream of hydraulic jump (L)

\(h_{2}\) :

Depth of the flow at downstream of hydraulic jump (L)

\(\mu \) :

Water viscosity (M L\(^{-1}\) T\(^{-1}\))

\(\varepsilon _\mathrm{T} \) :

Turbulence dissipation rate (L\(^{2}\) T\(^{-3}\))

\(\nu \) :

Kinematic viscosity (L\(^{2}\) T\(^{-1}\))

\(\rho \) :

Fluid density (M L\(^{-3}\))

References

  1. Rouse, H.; Siao, T.T.; Nagaratnam, S.: Turbulence characteristics of the hydraulic jumps. Trans. ASCE 124(1), 926–950 (1959)

    Google Scholar 

  2. Rao, N.S.; Rajaratnam, N.: The submerged hydraulic jump. J. Hydraul. Div. 89(1), 139–162 (1963)

    Google Scholar 

  3. McCorquodale, J.A.: Hydraulic jumps and internal flows. Encycl. Fluid. Mech 2, 120–173 (1986)

    Google Scholar 

  4. Long, D.; Steffler, P.M.; Rajaratnam, N.: LDA study of flow structure in submerged hydraulic jump. J. Hydraul. Res. 28(4), 437–460 (1990)

    Article  Google Scholar 

  5. Svendsen, I.A.; Veeramony, J.; Bakunin, J.; Kirby, J.T.: The flow in weak turbulent hydraulic jump. J. Fluid Mech. 418, 25–57 (2000)

    Article  MATH  Google Scholar 

  6. Liu, M.; Rajaratnam, N.; Zhu, D.: Turbulence structure of hydraulic jumps of low froude numbers. J. Hydraul. Eng. 130, 511–520 (2004)

    Article  Google Scholar 

  7. Hager, W.H.: Hydraulic jump in non-prismatic rectangular channels. J. Hydraul. Res. 23(1), 21–35 (1985)

    Article  Google Scholar 

  8. Hager, W.H.; Wanoschek, R.: Hydraulic jump in triangular channel. J. Hydraul. Res. 25(5), 549–564 (1987)

    Article  Google Scholar 

  9. Debabeche, M.; Cherhabil, S.; Hafnaoui, A.; Achour, B.: Hydraulic jump in a sloped triangular channel. Can. J. Civ. Eng. 36(4), 655–658 (2009)

    Article  Google Scholar 

  10. Vatankhah, A.R.; Omid, M.H.: Direct solution to problems of hydraulic jump in horizontal triangular channels. Appl. Math. Lett. 23, 1104–1108 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Rashwan, I.M.H.: Analytical solution to problems of hydraulic jump in horizontal triangular channels. Ain Shams Eng. J. 4, 365–368 (2013)

    Article  Google Scholar 

  12. Wanoschek, R.; Hager, W.H.: Hydraulic jump in trapezoidal channel. J. Hydraul. Res. 27(3), 429–446 (1989)

    Article  Google Scholar 

  13. Afzal, N.; Bushra, A.: Structure of the turbulent hydraulic jump in a trapezoidal channel. J. Hydraul. Res. 40(2), 205–214 (2002)

    Article  Google Scholar 

  14. Hager, W.H.: Hydraulic jump in U-shaped channel. J. Hydraul. Eng. 115(5), 667–675 (1989)

    Article  Google Scholar 

  15. Stahl, H.; Hager, W.H.: Hydraulic jump in circular pipes. Can. J. Civ. Eng. 26, 368–373 (1999)

    Article  Google Scholar 

  16. Bushra, A.; Afzal, N.: Hydraulic jump in circular and U-shaped channels. J. Hydraul. Res. 44(4), 567–576 (2006)

    Article  Google Scholar 

  17. Ghomri, A.; Debabeche, M.; Riguet, F.: Experimental study of hydraulic jump evolving in an u-shaped channel, with rough bed. J. Fundam. Appl. Sci. 1(2), 82–105 (2009)

    Article  Google Scholar 

  18. Zhang, Z.; Li, R.: Research on critical water depth, froude number and hydraulic jump of U-shaped channel. J. **’an Univ. Technol. 2, 014 (2012)

    Google Scholar 

  19. Houichi, L.; Dechemi, N.; Heddam, S.; Achour, B.: An evaluation of ANN methods for estimating the lengths of hydraulic jumps in U-shaped channel. J. Hydroinform. 15(1), 147–154 (2013)

    Article  Google Scholar 

  20. Abdel-Gawad, S.M.; McCorquodale, J.A.: Analysis of the submerged radial hydraulic jump. Can. J. Civ. Eng. 12(3), 593–602 (1985)

    Article  Google Scholar 

  21. Sakarya, A.B.A.; Tokyay, N.D.: Numerical simulation of A-type hydraulic jumps at positive steps. Can. J. Civ. Eng. 27(4), 805–813 (2000)

    Article  Google Scholar 

  22. Zhao, Q.; Misra, S.K.; Svendsen, I.A.; Kirby, J.T.: Numerical study of a turbulent hydraulic jump. In: Proc. 17th Eng. Mech. Div. Conf. Vancouver (2004)

  23. Federico, I.; Marrone, S.; Colagrossi, A.; Aristodemo, F.; Antuono, M.: Simulating 2D open-channel flows through an SPH model. Eur. J. Mech. B Fluids 34, 35–46 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Rostami, F.; Shahrokhi, M.; MdSaod, M.; Sabbagh Yazdi, S.R.: Numerical simulation of undular hydraulic jump on smooth bed using volume of fluid method. J. Appl. Math. Model. 37(3), 1514–1522 (2013)

    Article  MathSciNet  Google Scholar 

  25. Azimi, H.; Shabanlou, S.: The flow pattern in triangular channels along the side weir for subcritical flow regime. Flow Meas. Instrum. 46, 170–178 (2015)

    Article  Google Scholar 

  26. Azimi, H.; Hadad, H.; Shokati, Z.; Salimi, M.S.: Discharge and flow field of the circular channel along the side weir. Can. J. Civ. Eng. 42(4), 273–280 (2015)

    Article  Google Scholar 

  27. Azimi, H.; Shabanlou, S.: Comparison of subcritical and supercritical flow patterns within triangular channels along the side weir. Int. J. Nonlinear Sci. Numer. 17(7–8), 361–368 (2016)

    MathSciNet  Google Scholar 

  28. Azimi, H.; Shabanlou, S.; Ebtehaj, I.; Bonakdari, H.: Discharge coefficient of rectangular side weirs on circular channels. Int. J. Nonlinear Sci. Numer. 17(7–8), 391–399 (2016)

    MathSciNet  Google Scholar 

  29. Mahmodinia, S.; Javan, M.; Eghbalzadeh, A.: The flow field and free surface pattern of the submerged side weir with different lengths. Arab. J. Sci. Eng. 39(6), 4461–4472 (2014)

    Article  Google Scholar 

  30. Shekari, Y.; Javan, M.; Eghbalzadeh, A.: Three-dimensional numerical study of submerged hydraulic jumps. Arab. J. Sci. Eng. 39(10), 6969–6981 (2014)

    Article  Google Scholar 

  31. FLOW 3D User’s Manual.; (2011). Version 10.0. Flow Science Inc

  32. Hirt, C.W.; Nichols, B.D.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39(5), 201–225 (1981)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeid Shabanlou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azimi, H., Shabanlou, S. & Kardar, S. Characteristics of Hydraulic Jump in U-Shaped Channels. Arab J Sci Eng 42, 3751–3760 (2017). https://doi.org/10.1007/s13369-017-2503-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2503-5

Keywords

Navigation