Log in

Voltage-gated ion channels in central neurons of Helicoverpa armigera as potential targets for cycloxaprid: a cis-configuration neonicotinoid insecticide

  • Original Research Paper
  • Published:
Applied Entomology and Zoology Aims and scope Submit manuscript

Abstract

Cycloxaprid is a novel cis-neonicotinoid, mainly acting on the nicotinic acetylcholine receptor; however, it is not clear whether cycloxaprid can act on voltage-gated ion channels. In this study, the effects of cycloxaprid on the sodium, calcium and potassium channels in central neurons acutely dissociated from Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) were investigated by the whole-cell patch clamp technique. With the application of cycloxaprid, the half voltage (V0.5) of activation and inactivation of sodium channels exhibited an obvious hyperpolarizing shift around 4–16 mV and 4–14 mV, respectively. The window currents of sodium channels increased by 35.04–88.89%. The time course of recovery from inactivation was also significantly prolonged by 0.25–0.43 ms. The V0.5 of activation and inactivation of calcium channels exhibited a marked hyperpolarizing shift around 6–9 mV and 13–19 mV, respectively. The window currents of calcium channels increased by 13.82–28.97%. The time course of recovery from inactivation for calcium channels was prolonged by 0.76–16.85 ms, although not significantly. Comparatively, the peak currents and the V0.5 of activation of potassium channels showed no significant change. These results indicate that sodium and calcium channels of H. armigera are potential target sites of cycloxaprid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the article and its supplementary materials.

References

  • Ahmad M, Gladwell RT, McCaffery AR (1989) Decreased nerve sensitivity is a mechanism of resistance in a pyrethroid resistant strain of Heliothis armigera from Thailand. Pestic Biochem Physiol 35:165–171

    Article  CAS  Google Scholar 

  • Annely B, Anna G, Reinhold S, Marina M, Ralph B (2016) The neonicotinoids thiacloprid, imidacloprid, and clothianidin affect the immunocompetence of honey bees (Apis mellifera L.). J Insect Physiol 86:40–47

    Article  Google Scholar 

  • Bass C, Puinean AM, Andrews M, Cutler P, Daniels M, Elias J, Paul VL, Crossthwaite AJ, Denholm L, Field LM, Foster SP, Lind R, Williamson MS, Slater R (2011) Mutation of a nicotinic acetylcholine receptor β subunit is associated with resistance to neonicotinoid insecticides in the aphid Myzus persicae. BMC Neurosci 1:12–51

    Google Scholar 

  • Bloomquist JR (1996) Ion channels as targets for insecticides. Annu Rev Entomol 41:163–190

    Article  CAS  PubMed  Google Scholar 

  • Breckenridge CB, Holden L, Sturgess N, Weiner M, Sheets L, Sargent D, Soderlund DM, **-Sung C, Symington S, Clark JM, Burr S, Ray D (2009) Evidence for a separate mechanism of toxicity for the type I and the type II pyrethroid insecticides. Neuro Toxicology 30:17–31

    Google Scholar 

  • Casida JE (2018) Neonicotinoids and other insect nicotinic receptor competitive modulators: progress and prospects. Annu Rev Entomol 63:125–144

    Article  CAS  PubMed  Google Scholar 

  • Cui L, Sun LN, Yang DB, Yan XJ, Yuan HZ (2012) Effects of cycloxaprid, a novel cis-nitromethylene neonicotinoid insecticide, on the feeding behavior of Sitobion avenae. Pest Manag Sci 68:1484–1491

    Article  CAS  PubMed  Google Scholar 

  • Cui L, Sun LN, Yang DB, Yan XJ, Yuan HZ (2016) Cycloxaprid: a novel cis-nitromethylene neonicotinoid insecticide to control imidacloprid-resistant cotton aphid (Aphis gossypii). Pestic Biochem Physiol 132:96–101

    Article  CAS  PubMed  Google Scholar 

  • Dong K (2007) Insect sodium channels and insecticide resistance. Invertebr Neurosci 7:17–30

    Article  CAS  Google Scholar 

  • Fang Y, **e P, Dong CH, Han YQ, Tang T, Liu Y, Zhong J, Bai LY, Zhou XM (2018) Cross-resistance and baseline susceptibility of brown planthopper Nilaparvata lugens (Hemiptera: Delphacidae) from China to cycloxaprid. J Econ Entomol 111:2359–2363

    Article  CAS  PubMed  Google Scholar 

  • Fu ZY, Du CY, Yao Y, Liu CW, Tian YT, He BJ, Zhang T, Yang Z (2007) Effects of β-cypermethrin on voltage-gated potassium channels in rat hippocampal CA3 neurons. Acta Phytophysiol Sin 59:63–70 ((in Chinese with English abstract))

    CAS  Google Scholar 

  • Guan DY, Jiang XW, Li QY, Liu X, Ma YQ, Chen Q, Chen Q, Li-Byarlay H, He BJ (2020) Effects of guadipyr on voltage-gated calcium and potassium channels in central neurons of Helicoverpa armigera. Chin J Appl Entomol 4:841–849 ((in Chinese with English abstract))

    Google Scholar 

  • Han LX, Wu GY, Zang YY, He BJ (2015) Effects of tefluthrin and deltamethrin on intracellular calcium concentration in central neurons of Helicoverpa armigera. J Tian** Norm Univ Nat Sci Ed 35:96–101 ((in Chinese with English abstract))

    Google Scholar 

  • He BJ, Soderlund DM (2011) Differential state-dependent modification of rat Nav1.6 sodium channels expressed in human embryonic kidney (HEK293) cells by the pyrethroid insecticides tefluthrin and deltamethrin. Toxicol Appl Pharmacol 257:377–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeschke P, Nauen R (2008) Neonicotinoids-from zero to hero in insecticide chemistry. Pest Manag Sci 64:1084–1098

    Article  CAS  PubMed  Google Scholar 

  • Jeschke P, Nauen R, Schindler M, Elbert A (2011) Overview of the status and global strategy for neonicotinoids. J Agric Food Chem 59:2897–2908

    Article  CAS  PubMed  Google Scholar 

  • ** JX, Ye ZC, ** DC, Li FL, Li WH, Cheng Y, Zhou YH (2020) Changes in transcriptome and gene expression in Sogatella furcifera (Hemiptera: Delphacidae) in response to Cycloxaprid. J Econ Entomol 114:284–297

    Article  Google Scholar 

  • Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinf 12:1–16

    Article  Google Scholar 

  • Liu AX, Ning QJ, Chen XL, Huang RQ, Chen ST (1990) Modified action of cypermethrin enantiomers on axonal sodium and potassium channels of Periplaneta fulginosa (Serville). Acta Entomol Sin 1:1–6 ((in Chinese with English abstract))

    Google Scholar 

  • Liu ZW, Williamson MS, Lansdell SJ, Denholm I, Han ZJ, Millar NS (2005) A nicotinic acetylcholine receptor mutation conferring target-site resistance to imidacloprid in Nilaparvata lugens (brown planthopper). Proc Natl Acad Sci USA 102:8420–8425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Li QY, Liu X, Yang YC, He BJ, Li CS, Ma YQ (2021) Effects of nitenpyram on sodium and calcium channels in the central neurons of Helicoverpa armigera. Acta Sci Nat Univ Nankaiensis 54:23–29 ((in Chinese with English abstract))

    Google Scholar 

  • Lu J, Liu Y, Wang TT, Rui CH, He BJ (2019) Effects of cyhalothrin on high voltage activated calcium channels in central neurons of Helicoverpa armigera. Acta Sci Nat Univ Nankaiensis 2:44–50 ((in Chinese with English abstract))

    Google Scholar 

  • Magby JP, Richardson JR (2017) Developmental pyrethroid exposure causes longterm decreases of neuronal sodium channel expression. Neurotoxicology 60:274–279

    Article  CAS  PubMed  Google Scholar 

  • Matsuda K, Buckingham SD, Kleier D, Rauh JJ, Grauso M, Sattelle DB (2001) Neonicotinoids: insecticides acting on insect nicotinic acetylcholine receptors. Trends Pharmacol Sci 22:573–580

    Article  CAS  PubMed  Google Scholar 

  • Motomura H, Narahashi T (2001) Interaction of tetramethrin and deltamethrin at the single sodium channel in rat hippocampal neurons. Neurotoxicology 22:329–339

    Article  CAS  PubMed  Google Scholar 

  • Narahashi T (2000) Neuroreceptors and ion channels as the basis for drug action: past, present, and future. J Pharmacol Exp Ther 294:1–26

    CAS  PubMed  Google Scholar 

  • Ohno I, Tomizawa M, Durkin KA, Naruse Y, Casida JE, Kagabu S (2009) Molecular features of neonicotinoids pharmacophore variants interacting with the insect nicotinic receptor. Chem Res Toxicol 22:476–482

    Article  CAS  PubMed  Google Scholar 

  • Pan HS, Liu YQ, Liu B, Lu YH, Xu XY, Qian XH, Wu KM, Desneux N (2014) Lethal and sublethal effects of cycloxaprid, a novel cis-nitromethylene neonicotinoid insecticide, on the mirid bug Apolygus lucorum. J Pest Sci 87:731–738

    Article  Google Scholar 

  • Reddy GVP, Manjunatha M (2000) Laboratory and field studies on the integrated pest management of Helicoverpa armigera (Hübner) in cotton, based on pheromone trap catch threshold level. J Appl Entomol 124:213–221

    Article  Google Scholar 

  • Sarate PJ, Tamhane VA, Kotkar HM, Ratnakaran N, Susan N, Gupta VS, Giri AP (2012) Developmental and digestive flexibilities in the midgut of a polyphagous pest, the cotton bollworm, Helicoverpa armigera. J Insect Sci 12:1–16

    Article  Google Scholar 

  • Shao XS, Fu H, Xu XY, Xu XL, Liu ZW, Li Z, Qian XH (2010) Divalent and oxabridged neonicotinoids constructed by dialdehydes and nitromethylene analogues of imidacloprid: design, synthesis, crystal structure, and insecticidal activities. J Agric Food Chem 58:2696–2702

    Article  CAS  PubMed  Google Scholar 

  • Shao XS, Lee PW, Liu ZW, Xu XY, Li Z, Qian XH (2011) Cis-configuration: A new tactic/rationale for neonicotinoid molecular design. J Agric Food Chem 59:2943–2949

    Article  CAS  PubMed  Google Scholar 

  • Shi XB, Jiang LL, Wang HY, Qiao K, Wang D, Wang KY (2011) Toxicities and sublethal effects of seven neonicotinoid insecticides on survival, growth and reproduction of imidacloprid-resistant cotton aphid, Aphis gossypii. Pest Manag Sci 67:1528–1533

    Article  CAS  PubMed  Google Scholar 

  • Soderlund DM (2012) Molecular mechanisms of pyrethroid insecticide neurotoxicity: recent advances. Arch Toxicol 86:165–181

    Article  CAS  PubMed  Google Scholar 

  • Symington SB, Clark JM (2004) Action of deltamethrin on n-type (Cav 2.2) voltage-sensitive calcium channels in rat brain. Pestic Biochem Physiol 82:1–15

    Article  Google Scholar 

  • Tan HJ (2019) New neonicotinoid insecticide cycloxpyrid and its development. World Pestic 41:59–64

    Google Scholar 

  • Tian K, Feng J, Zhu J, Cheng JG, Li M, Qiu XH (2021) Pyrethrin-resembling pyrethroids are metabolized more readily than heavily modified ones by CYP9As from Helicoverpa armigera. Pestic Biochem Physiol. https://doi.org/10.1016/j.pestbp.2021.104871

    Article  PubMed  Google Scholar 

  • Wang Y, He BJ, Zhao Q, Liang Z, Liu AX (2006) Effects of cyhalothrin on the transient outward potassium current in central neurons of Helicoverpa armigera. Insect Sci 13:13–17

    Article  CAS  Google Scholar 

  • Wang KY, Guo QL, **a XM, Wang HY, Liu TX (2007) Resistance of Aphis gossypii (Homoptera: Aphididae) to selected insecticides on cotton from five cotton production regions in Shandong, China. J Pest Sci 32:372–378

    Article  CAS  Google Scholar 

  • Wang QQ, Rui CH, Wang L, Nahiyoon SA, Huang WL, Zhu JS, Ji XJ, Yang QJ, Yuan HZ, Li C (2021) Field-evolved resistance to 11 insecticides and the mechanisms involved in Helicoverpa armigera (Lepidoptera: Noctuidae). Pest Manag Sci 77:5086–5095

    Article  CAS  PubMed  Google Scholar 

  • Wu GY, Li L, Chen B, Chen C, Luo DQ, He BJ (2018) Natural meroterpenoids isolated from the plant pathogenic fungus Verticillium albo-atrum with noteworthy modification action against voltage-gated sodium channels of central neurons of Helicoverpa armigera. Pestic Biochem Physiol 144:91–99

    Article  CAS  PubMed  Google Scholar 

  • Wu GY, Li QY, Liu X, Li BHM, He BJ (2021) Differential state-dependent effects of deltamethrin and tefluthrin on sodium channels in central neurons of Helicoverpa armigera. Pestic Biochem Physiol. https://doi.org/10.1016/J.PESTBP.2021.104836

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from National Natural Science Foundation of China (Grant number 31871992 and 31371974).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingjun He.

Ethics declarations

Conflict of interest

All authors have read and approved the manuscript, and there is no conflict of interest in regard to the research, authorship, and publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1441 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Chen, M., Ma, Z. et al. Voltage-gated ion channels in central neurons of Helicoverpa armigera as potential targets for cycloxaprid: a cis-configuration neonicotinoid insecticide. Appl Entomol Zool 58, 149–160 (2023). https://doi.org/10.1007/s13355-023-00816-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13355-023-00816-x

Keywords

Navigation