Log in

Postulation of rust resistance genes in Nordic spring wheat genotypes and identification of widely effective sources of resistance against the Australian rust flora

  • Plant Genetics • Original Paper
  • Published:
Journal of Applied Genetics Aims and scope Submit manuscript

Abstract

Wild relatives, landraces and cultivars from different geographical regions have been demonstrated as the sources of genetic variation for resistance to rust diseases. This study involved assessment of diversity for resistance to three rust diseases among a set of Nordic spring wheat cultivars. These cultivars were tested at the seedling stage against several pathotypes of three rust pathogens in the greenhouse. All stage stem rust resistance genes Sr7b, Sr8a, Sr12, Sr15, Sr17, Sr23 and Sr30, and leaf rust resistance genes Lr1, Lr3a, Lr13, Lr14a, Lr16 and Lr20 were postulated either singly or in different combinations among these cultivars. A high proportion of cultivars were identified to carry linked rust resistance genes Sr15 and Lr20. Although 51 cultivars showed variation against Puccinia striiformis f. sp. tritici (Pst) pathotypes used in this study, results were not clearly contrasting to enable postulation of stripe rust resistance genes in these genotypes. Stripe rust resistance gene Yr27 was postulated in four cultivars and Yr1 was present in cultivar Zebra. Cultivar Tjalve produced low stripe rust response against all Pst pathotypes indicating the presence either of a widely effective resistance gene or combination of genes with compensating pathogenic specificities. Several cultivars carried moderate to high level of APR to leaf rust and stripe rust. Seedling stem rust susceptible cultivar Aston exhibited moderately resistant to moderately susceptible response, whereas other cultivars belonging to this class were rated moderately susceptible or higher. Molecular markers linked with APR genes Yr48, Lr34/Yr18/Sr57, Lr68 and Sr2 detected the presence of these genes in some genotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bansal U, Bariana H, Wong D, Randhawa M, Wicker T, Hayden M, Keller B (2014a) Molecular map** of an adult plant resistance gene Sr56 in winter wheat cultivar Arina. Theor Appl Genet 127:1441–1448

    Article  CAS  PubMed  Google Scholar 

  • Bansal UK, Forrest KL, Hayden MJ, Miah H, Singh H, Bariana HS (2011) Characterization of a new stripe rust resistance gene Yr47 and its genetic association with the leaf rust resistance gene Lr52. Theor Appl Genet 122:1461–1466

    Article  CAS  PubMed  Google Scholar 

  • Bansal UK, Hayden MJ, Gill MB, Bariana HS (2010) Chromosomal location of an uncharacterised stripe rust resistance gene in wheat. Euphytica 171:121–127

    Article  Google Scholar 

  • Bansal UK, Hayden MJ, Keller B, Wellings CR, Park RF, Bariana HS (2009) Relationship between wheat rust resistance genes Yr1 and Sr48 and a microsatellite marker. Plant Pathol 58:1039–1043

    Article  CAS  Google Scholar 

  • Bansal UK, Kazi AG, Singh B, Hare RA, Bariana HS (2014b) Map** of durable stripe rust resistance in a durum wheat cultivar Wollaroi. Mol Breed 33:51–59

    Article  CAS  Google Scholar 

  • Bansal UK, Zwart R, Bhavani S, Wanyera R, Gupta V, Braiana HS (2012) Microsatellite map** identifies TTKST-effective stem rust resistance gene in wheat cultivar VL404 Janz. Molecular Breeding 30:1757–1765

  • Bariana HS, McIntosh RA (1995) Genetics of adult plant stripe rust resistance in four Australian wheat cultivars and French cultivar Hybride-de-Bersee. Pl Breed 114:485–491

    Article  Google Scholar 

  • Bariana HS, Bansal UK, Basandrai D, Chhetri M (2013) Application of genomics to breed disease-resistant crop varieties. In: Kole C (ed) Genomics and breeding for climate-resilient crops, vol 2. Springer, Heidelberg, pp 291–314

    Chapter  Google Scholar 

  • Bariana HS, Brown GN, Bansal UK, Miah H, Standen GE, Lu M (2007a) Breeding triple rust resistant wheat cultivars for Australia using conventional and marker-assisted selection technologies. Aust J Agric Res 58:576–587

    Article  Google Scholar 

  • Bariana HS, Miah H, Brown GN, Willey N, Lehmensiek A (2007b) Molecular map** of durable rust resistance in wheat and its implication in breeding. In: Buck HT, Nisi JE, Salomon N (eds) Wheat production in stressed environments. Developments in plant breeding, vol 12. Springer, Heidelberg, pp 723–728

    Chapter  Google Scholar 

  • Bariana HS, Parry N, Barclay IR, Loughman R, McLean RJ, Shankar M, Wilson RE, Willey NJ, Francki M (2006) Identification and characterization of stripe rust resistance gene Yr34 in common wheat. Theor Appl Genet 112:1143–1148

  • Browder LE (1973) Probable genotype of some Triticum aestivum ‘Agent’ derivetives for reaction to Puccinia recondita f. sp. tritici. Crop Sci 13:203–206

    Article  Google Scholar 

  • Chen X, Soria MA, Yan G, Sun J, Dubcovsky J (2003) Development of sequence tagged site and cleaved amplified polymorphic sequence markers for wheat stripe rust resistance gene Yr5. Crop Sci 43:2058–2064

    Article  CAS  Google Scholar 

  • Cloutier S, McCallum B, Loutre C, Banks TW, Wicker T, Feuillet C, Keller B, Jordan MC (2007) Leaf rust resistance gene Lr1, isolated from bread wheat (Triticum aestivumL.) is a member of the large psr567 gene family. Plant Mol Biol 65:93–106

    Article  CAS  PubMed  Google Scholar 

  • Fu DL, Uauy C, Distelfeld A, Blechl A, Epstein L, Chen XM, Sela H, Fahima T, Dubcovsky J (2009) A kinase-START gene confers temperature - dependent resistance to wheat stripe rust. Science 323:1357–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrera-Foessel SA, Singh RP, Huerta-Espino J, Rosewarne GM, Periyannan SK, Viccar L, Calvo-Salazar V, Lan C, Lagudah ES (2012) Lr68: a new gene conferring slow rusting resistance to leaf rust in wheat. Theor Appl Genet 124:1475–1486

    Article  CAS  PubMed  Google Scholar 

  • Hovmoller MS (2007) Sources of seedling and adult plant resistance to Puccinia striiformis f. sp. tritici in European wheats. Plant Breed 126:225–233

    Article  Google Scholar 

  • Huang L, Brooks SA, Li W, Fellers JP, Trick HN, Gill BS (2003) Map-based cloning of leaf rust resistance gene Lr21from the large and polyploidy genome of bread wheat. Genetics 164:655–664

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hysing SC, Singh RP, Huerta-Espino J, Merker A, Liljeroth E, Diaz O (2006) Leaf rust (Puccinia triticina) resistance in wheat (Triticum aestivum) cultivars grown in Northern Europe 1992–2002. Hereditas 143:1–14

    Article  PubMed  Google Scholar 

  • Jayatilake D, Tucker E, Bariana H, Kuchel H, Edwards J, McKay A, Chalmers K, Mather D (2013) Genetic map** and marker development for resistance of wheat against the root lesion nematode Pratylenchus neglectus. BMC Plant Biol 13:230

    Article  PubMed  PubMed Central  Google Scholar 

  • Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, Bossolini E, Selter LL, Keller B (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323:1360–1363

    Article  CAS  PubMed  Google Scholar 

  • Lagudah ES, McFadden H, Singh RP, Huerta-Espino J, Bariana HS, Spielmeyer W (2006) Molecular genetic characterization of the Lr34/Yr18 slow rusting resistance gene region in wheat. Theor Appl Genet 114:21–30

    Article  CAS  PubMed  Google Scholar 

  • Lowe I, Jankuloski L, Chao SM, Chen XM, See D, Dubcovsky J (2011) Map** and validation of QTL which confer partial resistance to broadly virulent post-2000 North American races of stripe rust in hexaploid wheat. Theor Appl Genet 123:143–157

    Article  PubMed  PubMed Central  Google Scholar 

  • Mago R, Brown-Guedira G, Dreisigacker S, Breen J, ** Y, Singh R, Appels R, Lagudah ES, Ellis J, Spielmeyer W (2011) An accurate DNA marker assay for stem rust resistance gene Sr2 in Wheat. Theor Appl Genet 122:735–744

    Article  CAS  PubMed  Google Scholar 

  • Mago R, Zhang P, Vautrin S, Simkova H, Bansal U, Luo M-C, Rouse M, Karaoglu H, Periyannan S, Kolmer J, ** Y, Ayliffe MA, Bariana H, Park RF, McIntosh R, Dolezel J, Berges H, Spielmeyer W, Lagudah ES, Ellis JG, Dodds PN (2015) The wheat Sr50 gene reveals rich diversity at a cereal disease resistance locus. Nat Plants. doi:10.1038/NPLANTS.2015.186

    PubMed  Google Scholar 

  • McIntosh RA, Wellings CR, Park RF (1995) Wheat rust- an atlas of resistance genes. CSIRO, Canberra, Australia

    Google Scholar 

  • Mebrate SA, Dehne HW, Pillen K, Oerke EC (2008) Postulation of seedling leaf rust resistance genes in selected Ethiopian and German bread wheat cultivars. Crop Sci 48:507–516

    Article  Google Scholar 

  • Moore JW, Herrera-Foessel S, Lan C, Schnippenkoetter W, Ayliffe M, Hueta-Espino J, Lillemo M, Viccars L, Pariyannan S, Kong X, Speilmeyer W, Talbot M, Bariana H, Patrick JW, Dodds P, Singh R, Lagudah E (2015) A recently eveloved hexose transporter variant confers resistance to multiple pathogens in wheat. Nat Genet. doi:10.1038/ng.3439

    Google Scholar 

  • Park RF, Bariana HS, Wellings CR (2007) Preface. Aust J Agric Res 58:469

    Article  Google Scholar 

  • Park R, Goyeau H, Felsenstein F, Bartos P, Zeller F (2001) Regional phenotypic diversity of Puccinia triticina and wheat host resistance in Western Europe, 1995. Euphytica 122:113–127

    Article  CAS  Google Scholar 

  • Pathan AK, Park RF (2006) Evaluation of seedling and adult plant resistance to leaf rust in European wheat cultivars. Euphytica 149:327–342

    Article  CAS  Google Scholar 

  • Pathan AK, Park RF (2007) Evaluation of seedling and adult plant resistance to stem rust in European wheat cultivars. Euphytica 155:87–105

    Article  Google Scholar 

  • Pathan A, Wellings C, Bariana H, Park R (2008) Evaluation of seedling and adult plant resistance in European wheat cultivars to Australian isolates of Puccinia striiformis f. sp. tritici. Euphytica 163:283–301

    Article  Google Scholar 

  • Periyannan S, Moore J, Ayliffe M, Bansal U, Wang X, Huang L, Deal K, Luo M, Kong X, Bariana H, Mago R, McIntosh R, Dodds P, Dvorak J, Lagudah E (2013) The Ug99 effective wheat stem rust resistance gene Sr33 is an ortholog of the barley Mla mildew resistance gene. Science 341:786–788

    Article  CAS  PubMed  Google Scholar 

  • Ramirez-Gonzalez RH, Segovia V, Bird N, Fenwick P, Holdgate S, Berry S, Jack P, Coccamo M, Uauy C (2015) RNA-Seq bulked segregant analysis enables the identification of high-resolution genetic markers for breeding in hexaploid wheat. Plant Biotechnol J 13:613–624

    Article  CAS  PubMed  Google Scholar 

  • Randhawa M (2015) Molecular map** of rust resistance in wheat: discovery to deployment. Dissertation, The University of Sydney, Australia

  • Randhawa MS, Bansal UK, Mago R, Bariana HS (2015) Map** of a new stripe rust resistance locus Yr57 on chromosome 3BS of wheat. Mol Breed 35:65

    Article  Google Scholar 

  • Rouse MN, Nirmala J, ** Y, Chao S, Fetch TG Jr, Pretorius ZA, Hiebert CW (2014) Characterization of Sr9h, a wheat stem rust resistance allele effective to Ug99. Theor Appl Genet 127:1681–1688

  • Saintenac C, Zhang W, Salcedo A, Rouse MN, Trick HN, Akhunov E, Dubcovsky J (2013) Identification of wheat gene Sr35 that confers resistance to Ug99 race stem rust race group. Science 341

  • Singh D, Park RF, McIntosh RA (2001) Postulation of leaf (brown) rust resistance genes in 70 wheat cultivars grown in the United Kingdom. Euphytica 120:205–218

    Article  CAS  Google Scholar 

  • Singh D, Park RF, McIntosh RA, Bariana HS (2008) Characterisation of stem rust and stripe rust seedling resistance genes in selected wheat cultivars from the United Kingdom. J Plant Pathol 90:553–562

    Google Scholar 

  • Singh RP, Huerta-Espino J, Rajaram S (2000) Achieving near immunity to leaf and stripe rusts in wheat by combining slow rusting resistance genes. Acta Phytopathol Hung 35:135–139

    Google Scholar 

  • Spielmeyer W, Sharp P, Lagudah E (2003) Identification and validation of markers linked to broad-spectrum stem rust resistance gene Sr2 in wheat (Triticum aestivum L.). Crop Sci 43:333–336

    CAS  Google Scholar 

  • Wellings CR, Wright DG, Keiper F, Loughman R (2003) First detection of wheat stripe rust in Western Australia: evidence for a foreign incursion. Australasian Plant Pathology 32:321–322

  • Zhang P, McIntosh RA, Hoxha S, Dong C (2009) Wheat stripe rust resistance genes Yr5 and Yr7 are allelic. Theor Appl Genet 120:25–29

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Ren Y, Lillemo M, Yao Z, Zhang P, ** of adult-plant resistance to leaf rust in a RIL population derived from a cross of wheat cultivars Shanghai3/Catbird and Naxos. Theor Appl Genet 127:1873–1883

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

First author thanks the Australian Centre for International Agricultural Research (ACIAR) for the award of John Allwright Fellowship to pursue PhD study. We acknowledge financial support from the Grains Research Development Corporation (GRDC) Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harbans Bariana.

Ethics declarations

Conflict of interest

All authors have no conflict of interest.

Additional information

Communicated by: Andrzej Górny

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Randhawa, M., Bansal, U., Lillemo, M. et al. Postulation of rust resistance genes in Nordic spring wheat genotypes and identification of widely effective sources of resistance against the Australian rust flora. J Appl Genetics 57, 453–465 (2016). https://doi.org/10.1007/s13353-016-0345-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13353-016-0345-6

Keywords

Navigation