Log in

Acidity of Aerosols during Winter Heavy Haze Events in Bei**g and Gucheng, China

  • Special Collection on the Heavy and Persistent Haze-Fog Episodes in Winter 2016/17 in the Bei**g-Tian**-Hebei Area of China
  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

We investigated the acidity and concentrations of water-soluble ions in PM2.5 aerosol samples collected from an urban site in Bei**g and a rural site in Gucheng, Hebei Province from November 2016 to January 2017 to gain an insight into the formation of secondary inorganic species. The average SO42–, NO3, and NH4+ concentrations were 8.3, 12.5, and 14.1 μg m–3, respectively, at the urban site and 14.0, 14.2, and 24.2 μg m–3, respectively, at the rural site. The nitrogen and sulfur oxidation ratios in urban Bei**g were correlated with relative humidity (with correlation coefficient r = 0.79 and 0.67, respectively) and the aerosol loadings. Based on a parameterization model, we found that the rate constant of the heterogeneous reactions for SO2 on polluted days was about 10 times higher than that on clear days, suggesting that the heterogeneous reactions in the aerosol water played an essential role in haze events. The ISORROPIA II model was used to predict the aerosol pH, which had a mean (range) of 5.0 (4.9–5.2) and 5.3 (4.6–6.3) at the urban and rural site, respectively. Under the conditions with this predicted pH value, oxidation by dissolved NO2 and the hydrolysis of N2O5 may be the major heterogeneous reactions forming SO42– and NO3 in haze. We also analyzed the sensitivity of the aerosol pH to changes in the concentrations of SO42–, NO3, and NH4+ under haze conditions. The aerosol pH was more sensitive to the SO42– and NH4+ concentrations with opposing trends, than to the NO3 concentrations. The sensitivity of the pH was relatively weak overall, which was attributed to the buffering effect of NH3 partitioning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, B., R. J. Park, D. J. Jacob, et al., 2009: Transition metal-catalyzed oxidation of atmospheric sulfur: Global implications for the sulfur budget. J. Geophys. Res., 114, D02309, doi: 10.1029/2008JD010486.

    Google Scholar 

  • Arimoto, R., R. A. Duce, D. L. Savoie, et al., 1996: Relationships among aerosol constituents from Asia and the North Pacific during PEM-West A. J. Geophys. Res., 101, 2011–2023, doi: 10.1029/95JD01071.

    Article  Google Scholar 

  • Brook, R. D., S. Rajagopalan, C. A. Pope, et al., 2010: Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation, 121, 2331–2378, doi: 10.1161/CIR.0b013e3181dbece1.

    Article  Google Scholar 

  • Chameides, W. L., 1984: The photochemistry of a remote marine stratiform cloud. J. Geophys. Res., 89, 4739–4755, doi: 10.1029/JD089iD03p04739.

    Article  Google Scholar 

  • Cheng, Y. F., G. J. Zheng, C. Wei, et al., 2016: Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China. Sci. Adv., 2, e1601530, doi: 10.1126/sciadv.1601530.

    Article  Google Scholar 

  • Cheng, Z., J. K. Jiang, O. Fajardo, et al., 2013: Characteristics and health impacts of particulate matter pollution in China (2001–2011). Atmos. Environ., 65, 186–194, doi: 10.1016/j.atmosenv.2012.10.022.

    Article  Google Scholar 

  • Ehhalt, D. H., and F. Rohrer, 2000: Dependence of the OH concentration on solar UV. J. Geophys. Res., 105, 3565–3571, doi: 10.1029/1999JD901070.

    Article  Google Scholar 

  • Fountoukis, C., and A. Nenes, 2007: ISORROPIA II: A computationally efficient thermodynamic equilibrium model for K+–Ca2+–Mg2+–NH4 +–Na+–SO4 2––NO3––Cl––H2O aerosols. Atmos. Chem. Phys., 7, 4639–4659, doi: 10.5194/acp-7-4639-2007.

    Article  Google Scholar 

  • Gao, J., T. Wang, X. H. Zhou, et al., 2009: Measurement of aerosol number size distributions in the Yangtze River delta in China: Formation and growth of particles under polluted conditions. Atmos. Environ., 43, 829–836, doi: 10.1016/j.atmosenv. 2008.10.046.

    Article  Google Scholar 

  • Guo, H., L. Xu, A. Bougiatioti, et al., 2015: Fine-particle water and pH in the southeastern United States. Atmos. Chem. Phys., 15, 5211–5228, doi: 10.5194/acp-15-5211-2015.

    Article  Google Scholar 

  • Guo, S., M. Hu, M. L. Zamora, et al., 2014: Elucidating severe urban haze formation in China. Proc. Natl. Acad. Sci. USA, 111, 17373–17378, doi: 10.1073/pnas.1419604111.

    Article  Google Scholar 

  • He, H., Y. S. Wang, Q. X. Ma, et al., 2014: Mineral dust and NOx promote the conversion of SO2 to sulfate in heavy pollution days. Sci. Rep., 4, 4172, doi: 10.1038/srep04172.

    Article  Google Scholar 

  • He, K., Q. Zhao, Y. Ma, et al., 2012: Spatial and seasonal variability of PM2.5 acidity at two Chinese megacities: Insights into the formation of secondary inorganic aerosols. Atmos. Chem. Phys., 12, 1377–1395, doi: 10.5194/acpd-11-25557-2011.

    Article  Google Scholar 

  • Hennigan, C. J., J. Izumi, A. P. Sullivan, et al., 2015: A critical evaluation of proxy methods used to estimate the acidity of atmospheric particles. Atmos. Chem. Phys., 15, 2775–2790, doi: 10.5194/acp-15-2775-2015.

    Article  Google Scholar 

  • Huang, X., Y. Song, M. M. Li, et al., 2012: A high-resolution ammonia emission inventory in China. Global Biogeochem. Cycles, 26, GB1030, doi: 10.1029/2011GB004161.

    Google Scholar 

  • Jacob, D. J., 2000: Heterogeneous chemistry and tropospheric ozone. Atmos. Environ., 34, 2131–2159, doi: 10.1016/S1352-2310(99)00462-8.

    Article  Google Scholar 

  • Jiang, J. K., W. Zhou, Z. Cheng, et al., 2015: Particulate matter distributions in China during a winter period with frequent pollution episodes (January 2013). Aerosol Air Qual. Res., 15, 494–503, doi: 10.4209/aaqr.2014.04.0070.

    Google Scholar 

  • Keene, W. C., A. A. P. Pszenny, J. R. Maben, et al., 2004: Closure evaluation of size-resolved aerosol pH in the New England coastal atmosphere during summer. J. Geophys. Res., 109, D23307, doi: 10.1029/2004JD004801.

    Article  Google Scholar 

  • Liu, X. G., J. Li, Y. Qu, et al., 2013: Formation and evolution mechanism of regional haze: A case study in the megacity Bei**g, China. Atmos. Chem. Phys., 13, 4501–4514, doi: 10.5194/acp-13-4501-2013.

    Article  Google Scholar 

  • Lu, K. D., A. Hofzumahaus, F. Holland, et al., 2013: Missing OH source in a suburban environment near Bei**g: Observed and modeled OH and HO2 concentrations in summer 2006. Atmos. Chem. Phys., 13, 1057–1080, doi: 10.5194/acp-13-1057-2013.

    Article  Google Scholar 

  • Meier, J., B. Wehner, A. Massling, et al., 2009: Hygroscopic growth of urban aerosol particles in Bei**g (China) during wintertime: A comparison of three experimental methods. Atmos. Chem. Phys., 9, 6865–6880, doi: 10.5194/acp-9-6865-2009.

    Article  Google Scholar 

  • Meng, Z. Y., X. B. Xu, P. Yan, et al., 2009: Characteristics of trace gaseous pollutants at a regional background station in northern China. Atmos. Chem. Phys., 9, 927–936, doi: 10.5194/acp-9-927-2009.

    Article  Google Scholar 

  • Nemitz, E., M. A. Sutton, G. P. Wyers, et al., 2004: Gas-particle interactions above a Dutch heathland: I. Surface exchange fluxes of NH3, SO2, HNO3 and HCl. Atmos. Chem. Phys., 4, 989–1005, doi: 10.5194/acp-4-989-2004.

    Google Scholar 

  • Pan, Y. P., S. L. Tian, D. W. Liu, et al., 2016: Fossil fuel combustion-related emissions dominate atmospheric ammonia sources during severe haze episodes: Evidence from 15Nstable isotope in size-resolved aerosol ammonium. Environ. Sci. Technol., 50, 8049–8056, doi: 10.1021/acs.est.6b00634.

    Article  Google Scholar 

  • Pathak, R. K., W. S. Wu, and T. Wang, 2009: Summertime PM2.5 ionic species in four major cities of China: Nitrate formation in an ammonia-deficient atmosphere. Atmos. Chem. Phys., 9, 1711–1722, doi: 10.5194/acp-9-1711-2009.

    Article  Google Scholar 

  • Quan, J. N., X. X. Tie, Q. Zhang, et al., 2014: Characteristics of heavy aerosol pollution during the 2012–2013 winter in Bei**g, China. Atmos. Environ., 88, 83–89, doi: 10.1016/j.atmosenv. 2014.01.058.

    Article  Google Scholar 

  • Seinfeld, J. H., G. R. Carmichael, R. Arimoto, et al., 2004: ACEASIA: Regional climatic and atmospheric chemical effects of Asian dust and pollution. Bull. Amer. Meteor. Soc., 85, 367–380, doi: 10.1175/BAMS-85-3-367.

    Article  Google Scholar 

  • Shen, Z. X., J. J. Cao, R. Arimoto, et al., 2009: Ionic composition of TSP and PM2.5 during dust storms and air pollution episodes at **’an, China. Atmos. Environ., 43, 2911–2918, doi: 10.1016/j.atmosenv.2009.03.005.

    Article  Google Scholar 

  • Song, C. H., and G. R. Carmichael, 2001: A three-dimensional modeling investigation of the evolution processes of dust and sea-salt particles in East Asia. J. Geophys. Res., 106, 18131–18154, doi: 10.1029/2000JD900352.

    Article  Google Scholar 

  • Streets, D. G., T. C. Bond, G. R. Carmichael, et al., 2003: An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. J. Geophys. Res., 108, 8809, doi: 10.1029/2002jd003093.

    Article  Google Scholar 

  • Sun, Y. L., G. S. Zhuang, A. H. Tang, et al., 2006: Chemical characteristics of PM2.5 and PM10 in haze–fog episodes in Bei**g. Environ. Sci. Technol., 40, 3148–3155, doi: 10.1021/es051533g.

    Article  Google Scholar 

  • Sun, Y. L., Z. F. Wang, O. Wild, et al., 2016: “APEC Blue”: Secondary aerosol reductions from emission controls in Bei**g. Sci. Rep., 6, 20668, doi: 10.1038/srep20668.

    Article  Google Scholar 

  • Sun, Z. Q., Y. J. Mu, Y. J. Liu, et al., 2013: A comparison study on airborne particles during haze days and non-haze days in Bei**g. Sci. Total Environ., 456–457, 1–8, doi: 10.1016/j.scitotenv.2013.03.006.

    Article  Google Scholar 

  • Van Oss, R., J. Duyzer, and P. Wyers, 1998: The influence of gasto-particle conversion on measurements of ammonia exchange over forest. Atmos. Environ., 32, 465–471, doi: 10.1016/S1352-2310(97)00280-X.

    Article  Google Scholar 

  • Wang, Y., G. S. Zhuang, A.H. Tang, et al., 2005: The ion chemistry and the source of PM2.5 aerosol in Bei**g. Atmos. Environ., 39, 3771–3784, doi: 10.1016/j.atmosenv.2005.03.013.

    Article  Google Scholar 

  • Wang, Y., G. S. Zhuang, Y. L. Sun, et al., 2006: The variation of characteristics and formation mechanisms of aerosols in dust, haze, and clear days in Bei**g. Atmos. Environ., 40, 6579–6591, doi: 10.1016/j.atmosenv.2006.05.066.

    Article  Google Scholar 

  • Wang, K., Y. Zhang, A. Nenes, et al., 2012: Implementation of dust emission and chemistry into the Community Multiscale Air Quality modeling system and initial application to an Asian dust storm episode. Atmos. Chem. Phys., 12, 10209–10237, doi: 10.5194/acp-12-10209-2012.

    Article  Google Scholar 

  • Wang, X. F., W. X. Wang, L. X. Yang, et al., 2012: The secondary formation of inorganic aerosols in the droplet mode through heterogeneous aqueous reactions under haze conditions. Atmos. Environ., 63, 68–76, doi: 10.1016/j.atmosenv. 2012.09.029.

    Article  Google Scholar 

  • Wang, Y., Q. Q. Zhang, K. He, et al., 2013: Sulfate-nitrate-ammonium aerosols over China: Response to 2000–2015 emission changes of sulfur dioxide, nitrogen oxides, and ammonia. Atmos. Chem. Phys., 13, 2635–2652, doi: 10.5194/acp-13-2635-2013.

    Article  Google Scholar 

  • Wang, Y. X., Q. Q. Zhang, J. K. Jiang, et al., 2014: Enhanced sulfate formation during China’s severe winter haze episode in January 2013 missing from current models. J. Geophys. Res., 119, 10425–10440, doi: 10.1002/2013JD021426.

    Google Scholar 

  • Wang, Z. F., J. Li, Z. Wang, et al., 2014: Modeling study of regional severe hazes over mid–eastern China in January 2013 and its implications on pollution prevention and control. Sci. China Earth Sci., 57, 3–13, doi: 10.1007/s11430-013-4793-0.

    Article  Google Scholar 

  • Wang, G. H., R. Y. Zhang, M. E. Gomez, et al, 2016: Persistent sulfate formation from London Fog to Chinese haze. Proc. Natl. Acad. Sci. USA,, 113, 113630–113635, doi: 10.1073/pnas.1616540113.

    Google Scholar 

  • Weber, R. J., H. Y. Guo, A. G. Russell, et al., 2016: High aerosol acidity despite declining atmospheric sulfate concentrations over the past 15 years. Nat. Geosci., 9, 282–285, doi: 10.1038/ngeo2665.

    Article  Google Scholar 

  • WHO, 2006}: Air Quality Guidelines. Global Update 2005. Particulate Matter, Ozone, Nitrogen Dioxide, and Sulfur Dioxide. Geneva, World Health Organization

  • Xu, L., H. Y. Guo, C. M. Boyd, et al., 2015: Effects of anthropogenic emissions on aerosol formation from isoprene and monoterpenes in the southeastern United States. Proc. Natl. Acad. Sci. USA, 112, 37–42, doi: 10.1073/pnas.1417609112.

    Article  Google Scholar 

  • Yang, F., J. Tan, Q. Zhao, et al., 2011: Characteristics of PM2.5 speciation in representative megacities and across China. Atmos. Chem. Phys., 11, 5207–5219, doi: 10.5194/acp-11-5207-2011.

    Article  Google Scholar 

  • Yang, Y. R., X. G. Liu, Y. Qu, et al., 2015: Characteristics and formation mechanism of continuous hazes in China: A case study during the autumn of 2014 in the North China Plain. Atmos. Chem. Phys., 15, 8165–8178, doi: 10.5194/acp-15-8165-2015.

    Article  Google Scholar 

  • Yao, X. H., C. K. Chan, M. Fang, et al., 2002: The water-soluble ionic composition of PM2.5 in Shanghai and Bei**g, China. Atmos. Environ., 36, 4223–4234, doi: 10.1016/S1352-2310(02)00342-4.

    Article  Google Scholar 

  • Ye, P. P., Z. Q. **e, J. Yu, et al., 2015: Spatial distribution of methanesulphonic acid in the Arctic aerosol collected during the Chinese Arctic Research Expedition. Atmosphere, 6, 699–712, doi: 10.3390/atmos6050699.

    Article  Google Scholar 

  • Zhang, J. K., Y. Sun, Z. R. Liu, et al., 2014: Characterization of submicron aerosols during a month of serious pollution in Bei**g. 2013. Atmos. Chem. Phys., 14, 2887–2903, doi: 10.5194/acp-14-2887-2014.

    Article  Google Scholar 

  • Zhang, Q., Z. X. Shen, J. J. Cao, et al., 2015: Variations in PM2.5, TSP, BC, and trace gases (NO2, SO2, and O3) between haze and non-haze episodes in winter over **’an, China. Atmos. Environ., 112, 64–71, doi: 10.1016/j.atmosenv.2015.04.033.

    Article  Google Scholar 

  • Zhang, R. Y., G. H. Wang, S. Guo, et al., 2015: Formation of urban fine particulate matter. Chem. Rev., 115, 3803–3855, doi: 10.1021/acs.chemrev.5b00067.

    Article  Google Scholar 

  • Zhao, M.-J., S.-X. Wang, J.-H. Tan, et al., 2016: Variation of urban atmospheric ammonia pollution and its relation with PM2.5 chemical property in winter of Bei**g, China. Aerosol Air Qual. Res., 16, 1378–1389, doi: 10.4209/aaqr.2015.12.0699.

    Google Scholar 

  • Zheng, B., Q. Zhang, Y. Zhang, et al., 2015: Heterogeneous chemistry: A mechanism missing in current models to explain secondary inorganic aerosol formation during the January 2013 haze episode in North China. Atmos. Chem. Phys., 15, 2031–2049, doi: 10.5194/acp-15-2031-2015.

    Article  Google Scholar 

  • Zheng, G. J., F. K. Duan, H. Su, et al., 2015: Exploring the severe winter haze in Bei**g: The impact of synoptic weather, regional transport and heterogeneous reactions. Atmos. Chem. Phys., 15, 2969–2983, doi: 10.5194/acp-15-2969-2015.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Haochi Che of the Chinese Academy of Meteorological Sciences and Sanxue Ren of the China Meteorological Administration farm at Gucheng for carrying out the sampling at the Bei**g and Gucheng site, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhouqing **e.

Additional information

Supported by the National Key Project of Ministry of Science and Technology of China (2016YFC0203302) and National Natural Science Foundation of China (91544103).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chi, X., He, P., Jiang, Z. et al. Acidity of Aerosols during Winter Heavy Haze Events in Bei**g and Gucheng, China. J Meteorol Res 32, 14–25 (2018). https://doi.org/10.1007/s13351-018-7063-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-018-7063-4

Keywords

Navigation