Log in

Ex vivo investigation of ocular tissue distribution following intravitreal administration of connexin43 mimetic peptide using the microdialysis technique and LC-MS/MS

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

This study aimed to develop and evaluate an ex vivo eye model for intravitreal drug sampling and tissue distribution of connexin43 mimetic peptide (Cx43MP) following intravitreal injection using the microdialysis technique and LC-MS/MS. An LC-MS/MS method was developed, validated, and applied for quantification of Cx43MP in ocular tissues. Microdialysis probes were calibrated for in vitro recovery studies. Bovine eyes were fixed in a customized eye holder and after intravitreal injection of Cx43MP, microdialysis probes were implanted in the vitreous body. Vitreous samples were collected at particular time intervals over 24 h. Moreover, 24 and 48 h after intravitreal injection ocular tissues were collected, processed, and analyzed for Cx43MP concentrations using LC-MS/MS. The LC-MS/MS method showed good linearity (r 2 = 0.9991). The mean percent recovery for lower (LQC), medium (MQC), and higher quality control (HQC) (0.244, 3.906, and 125 μg/mL) was found to be 83.83, 84.92, and 94.52, respectively, with accuracy ranges between 96 and 99 % and limits of detection (LOD) and quantification (LOQ) of 0.122 and 0.412 μg/mL. The in vitro recovery of the probes was found to be over 80 %. As per microdialysis sample analysis, the Cx43MP concentration was found to increase slowly in the vitreous body up to 16 h and thereafter declined. After 48 h, the Cx43MP concentration was higher in vitreous, cornea, and retina compared to lens, iris, and aqueous humor. This ex vivo model may therefore be a useful tool to investigate intravitreal kinetics and ocular disposition of therapeutic molecules after intravitreal injection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ACN:

Acetonitrile

AMD:

Age-related macular degeneration

Cx43MP:

Connexin43 mimetic peptide

CMV:

Cytomegalovirus

DR:

Diabetic retinopathy

LC-MS/MS:

Liquid chromatographic tandem mass spectroscopy

RP:

Reverse phase

Octd:

Octreotide

MRM:

Multiple reactions monitoring

RSD:

Relative standard deviation

LOD:

Limit of detection

LOQ:

Limit of quantification

IPBS:

Isotonic phosphate buffer saline

LQC:

Lower quality control

MQC:

Medium quality control

HQC:

High quality control

References

  1. Thrimawithana TR, Young S, Bunt CR, Green C, Alany RG. Drug delivery to the posterior segment of the eye. Drug Discov Today. 2011;16:270–7.

    Article  CAS  PubMed  Google Scholar 

  2. Peptu CA, Popa M, Savin C, Popa RE, Ochiuz L. Modern drug delivery systems for targeting the posterior segment of the eye. Curr Pharm Des. 2015;21:6055–69.

    Article  CAS  PubMed  Google Scholar 

  3. Geroski DH, Edelhauser HF. Drug delivery for posterior segment eye disease. Invest Ophthalmol Vis Sci. 2000;41:961–4.

    CAS  PubMed  Google Scholar 

  4. MacHa S, Mitra AK. Ocular pharmacokinetics of cephalosporins using microdialysis. J Ocul Pharmacol Ther. 2001;17:485–98.

    Article  CAS  PubMed  Google Scholar 

  5. Vaishya RD, Ananthula HK, Mitra AK, Microdialysis for vitreal pharmacokinetics, in drug product development for the back of the eye, B.U. Kompella and F.H. Edelhauser, Editors. 2011, Springer US: Boston, MA. p. 21–45.

  6. Boddu SH, Gunda S, Earla R, Mitra AK. Ocular microdialysis: a continuous sampling technique to study pharmacokinetics and pharmacodynamics in the eye. Bioanalysis. 2010;2:487–507.

    Article  PubMed  Google Scholar 

  7. Elmquist WF, Sawchuk RJ. Application of microdialysis in pharmacokinetic studies. Pharm Res. 1997;14:267–88.

    Article  CAS  PubMed  Google Scholar 

  8. Hughes PM, Krishnamoorthy R, Mitra AK. Vitreous disposition of two Acycloguanosine antivirals in the albino and pigmented rabbit models: a novel ocular microdialysis technique. J Ocul Pharmacol Ther. 1996;12:209–24.

    Article  CAS  PubMed  Google Scholar 

  9. Dias C, Nashed Y, Atluri H, Mitra A. Ocular penetration of acyclovir and its peptide prodrugs valacyclovir and val-valacyclovir following systemic administration in rabbits: an evaluation using ocular microdialysis and LC-MS. Curr Eye Res. 2002;25:243–52.

    Article  PubMed  Google Scholar 

  10. Atluri H, Mitra AK. Disposition of short-chain aliphatic alcohols in rabbit vitreous by ocular microdialysis. Exp Eye Res. 2003;76:315–20.

    Article  CAS  PubMed  Google Scholar 

  11. Anand BS, Atluri H, Mitra AK. Validation of an ocular microdialysis technique in rabbits with permanently implanted vitreous probes: systemic and intravitreal pharmacokinetics of fluorescein. Int J Pharm. 2004;281:79–88.

    Article  CAS  PubMed  Google Scholar 

  12. Chen YS, Green CR, Wang K, Danesh-Meyer HV, Rupenthal ID. Sustained intravitreal delivery of connexin43 mimetic peptide by poly(d,l-lactide-co-glycolide) acid micro- and nanoparticles—closing the gap in retinal ischaemia. Eur J Pharm Biopharm. 2015;95(Part B):378–86.

    Article  CAS  PubMed  Google Scholar 

  13. Danesh-Meyer HV, Kerr NM, Zhang J, Eady EK, O'Carroll SJ, Nicholson LF, Johnson CS, Green CR. Connexin43 mimetic peptide reduces vascular leak and retinal ganglion cell death following retinal ischaemia. Brain. 2012;135:506–20.

    Article  PubMed  Google Scholar 

  14. O’Carroll SJ, Gorrie CA, Velamoor S, Green CR, Nicholson LFB. Connexin43 mimetic peptide is neuroprotective and improves function following spinal cord injury. Neurosci Res. 2013;75:256–67.

    Article  CAS  PubMed  Google Scholar 

  15. O'Carroll SJ, Alkadhi M, Nicholson LFB, Green CR. Connexin43 mimetic peptides reduce swelling, Astrogliosis, and neuronal cell death after spinal cord injury. Cell Commun Adhes. 2008;15:27–42.

    Article  CAS  PubMed  Google Scholar 

  16. Moore K, Bryant Z, Vandergriff A, Ghatnekar G, Gourdie R, Potts J. Delivery of a novel Connexin-43 mimetic peptide enhances wound healing. Microsc Microanal. 2013;19:216–7.

    Article  Google Scholar 

  17. Ghatnekar GS, O’Quinn MP, Jourdan LJ, Gurjarpadhye AA, Draughn RL, Gourdie RG. Connexin43 carboxyl-terminal peptides reduce scar progenitor and promote regenerative healing following skin wounding. Regen Med. 2009;4:205–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Frantseva MV, Kokarovtseva L, Velazquez JLP. Ischemia-induced brain damage depends on specific gap-junctional coupling. J Cereb Blood Flow Metab. 2002;22:453–62.

    Article  PubMed  Google Scholar 

  19. Duvvuri S, Rittenhouse KD, Mitra AK. Microdialysis assessment of drug delivery systems for vitreoretinal targets. Adv Drug Deliv Rev. 2005;57:2080–91.

    Article  CAS  PubMed  Google Scholar 

  20. Dias CS, Mitra AK. Posterior segment ocular pharmacokinetics using microdialysis in a conscious rabbit model. Invest Ophthalmol Vis Sci. 2003;44:300–5.

    Article  PubMed  Google Scholar 

  21. Anand BS, Katragadda S, Gunda S, Mitra AK. In vivo ocular pharmacokinetics of acyclovir dipeptide Ester prodrugs by microdialysis in rabbits. Mol Pharm. 2006;3:431–40.

    Article  CAS  PubMed  Google Scholar 

  22. Park J, Bungay PM, Lutz RJ, Augsburger JJ, Millard RW, Sinha Roy A, Banerjee RK. Evaluation of coupled convective–diffusive transport of drugs administered by intravitreal injection and controlled release implant. J Control Release. 2005;105:279–95.

    Article  CAS  PubMed  Google Scholar 

  23. Laude A, Tan LE, Wilson CG, Lascaratos G, Elashry M, Aslam T, Patton N, Dhillon B. Intravitreal therapy for neovascular age-related macular degeneration and inter-individual variations in vitreous pharmacokinetics. Prog Retin Eye Res. 2010;29:466–75.

    Article  CAS  PubMed  Google Scholar 

  24. Missel PJ. Hydraulic flow and vascular clearance influences on intravitreal drug delivery. Pharm Res. 2002;19:1636–47.

    Article  CAS  PubMed  Google Scholar 

  25. Tan LE, Orilla W, Hughes PM, Tsai S, Burke JA, Wilson CG. Effects of vitreous liquefaction on the intravitreal distribution of sodium fluorescein, fluorescein dextran, and fluorescent microparticles. Invest Ophthalmol Vis Sci. 2011;52:1111–8.

    Article  CAS  PubMed  Google Scholar 

  26. Chin HS, Park TS, Moon YS, Oh JH. Difference in clearance of intravitreal triamcinolone acetonide between vitrectomized and nonvitrectomized eyes. Retina. 2005;25:556–60.

    Article  PubMed  Google Scholar 

  27. Mandell BA, Meredith TA, Aguilar E, el-Massry A, Sawant A, Gardner S. Effects of inflammation and surgery on amikacin levels in the vitreous cavity. Am J Ophthalmol. 1993;115:770–4.

    Article  CAS  PubMed  Google Scholar 

  28. Bakri SJ, Snyder MR, Reid JM, Pulido JS, Singh RJ. Pharmacokinetics of intravitreal bevacizumab (Avastin). Ophthalmology. 2007;114:855–9.

    Article  PubMed  Google Scholar 

  29. Mitchell P, Korobelnik JF, Lanzetta P, Holz FG, Prunte C, Schmidt-Erfurth U, Tano Y, Wolf S. Ranibizumab (Lucentis) in neovascular age-related macular degeneration: evidence from clinical trials. Br J Ophthalmol. 2010;94:2–13.

    Article  CAS  PubMed  Google Scholar 

  30. Chuang GS, Rogers GS, Zeltser R. Poiseuille's law and large-bore needles: insights into the delivery of corticosteroid injections in the treatment of keloids. J Am Acad Dermatol. 2008;59:167–8.

    Article  PubMed  Google Scholar 

  31. Friedrich S, Cheng YL, Saville B. Drug distribution in the vitreous humor of the human eye: the effects of intravitreal injection position and volume. Curr Eye Res. 1997;16:663–9.

    Article  CAS  PubMed  Google Scholar 

  32. Adelman RA, Zheng Q, Mayer HR. Persistent ocular hypertension following intravitreal bevacizumab and ranibizumab injections. J Ocul Pharmacol Ther. 2010;26:105–10.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the University of Auckland for providing a Doctoral Scholarship to Rohit Bisht and the Department of Pharmaceutical Sciences, University of Missouri-Kansas City (UMKC), for providing the research facilities. The authors would also like to thank the Sir John Logan Campbell Medical Trust and the Postgraduate Student Association (PGSA), University of Auckland, for providing travel grants to Rohit Bisht to visit the University of Missouri-Kansas City.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashim K. Mitra.

Ethics declarations

Conflict of interest

There is no conflict of interest with regards to the execution of the research work undertaken as well as the preparation of the manuscript. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bisht, R., Mandal, A., Rupenthal, I.D. et al. Ex vivo investigation of ocular tissue distribution following intravitreal administration of connexin43 mimetic peptide using the microdialysis technique and LC-MS/MS. Drug Deliv. and Transl. Res. 6, 763–770 (2016). https://doi.org/10.1007/s13346-016-0308-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-016-0308-9

Keywords

Navigation