Log in

Random Vibration Analysis of a Vehicle–Bridge Interaction System Subjected to Traveling Seismic Ground Motions Using Pseudo-excitation Method

  • Published:
International Journal of Steel Structures Aims and scope Submit manuscript

Abstract

For long, multi-span bridges, traveling seismic waves arrive at different bridge support points at different times. To study this difference, random dynamic vibration analysis of a vehicle–bridge interaction system under traveling seismic ground motions was performed in the present paper. A vehicle model with 27 degrees of freedom is used, while three-dimensional Euler beams are used to model the track and the bridge. The equation of motion of the vehicle–bridge interaction system was established through the wheel-rail relationship. The expression of the standard deviation of the system vibrations and the running safety factor is derived by the pseudo-excitation method. The proposed method is validated by comparing random bridge vibrations using the Monte-Carlo method. As a case study, a Chinese-made electric multiple unit train running on a ten-span simply supported bridge is analyzed under track irregularities and seismic ground motions with consideration of the effects of different train speeds, different seismic intensities, and different seismic wave propagation velocities. The results show that wave propagation velocities significantly affect the random vibration performances and the running safety of the vehicle-bridge interaction system. Therefore, it is important to include wave propagation velocities when calculating the random seismic vibrations of a vehicle-bridge interaction system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adanur, S., Altunışık, A. C., Başağa, H. B., Soyluk, K., & Dumanoğlu, A. A. (2017). Wave-passage effect on the seismic response of suspension bridges considering local soil conditions. International Journal of Steel Structures, 17(2), 501–513.

    Article  Google Scholar 

  • Arman, D. K. (1996). A coherency model for spatially varying ground motions. Earthquake Engineering & Structural Dynamics, 25(1), 99–111.

    Article  Google Scholar 

  • Ateş, Ş, Tonyali, Z., Soyluk, K., & Samberou, A. M. S. (2018). Effectiveness of soil-structure interaction and dynamic characteristics on cable-stayed bridges subjected to multiple support excitation. International Journal of Steel Structures, 18(2), 554–568.

    Article  Google Scholar 

  • Chen, J. T., Chyuan, S. W., You, D. W., & Wong, F. C. (1997). Normalized quasi-static mass—A new definition for multi-support motion problems. Finite Elements in Analysis and Design, 26(2), 127–142.

    Article  MATH  Google Scholar 

  • Chen, J. B., Kong, F., & Peng, Y. B. (2017). A stochastic harmonic function representation for non-stationary stochastic processes. Mechanical Systems and Signal Processing, 96, 31–44.

    Article  Google Scholar 

  • Chopra, A. K. (1995). Dynamics of structures theory and applications to earthquake engineering. Prentice Hall.

    MATH  Google Scholar 

  • Clough, R. W., & Penzien, J. (2010). Dynamics of structures (3rd ed.). Computers and Structures inc.

  • De, S. C. W. (2005). Vibration and shock handbook. CRC Press.

    MATH  Google Scholar 

  • GB50111-2006. (2009). Code for seismic design of railway engineering. China Planning Press.

  • Hong, X., Guo, W., & Wang, Z. (2020). Seismic analysis of coupled high-speed train-bridge with the isolation of friction pendulum bearing. Advances in Civil Engineering, 2020, 1–15.

    Google Scholar 

  • Jennings, P. C., Housner, G. W., & Tsai, N. C. (1968). Simulated earthquake motions (Research report).

  • Jia, H. Y., Zhang, D. Y., Zheng, S. X., **e, W. C., & Pandey, M. D. (2013). Local site effects on a high-pier railway bridge under tridirectional spatial excitations: Nonstationary stochastic analysis. Soil Dynamics and Earthquake Engineering, 52, 55–69.

    Article  Google Scholar 

  • Li, J., & Chen, J. B. (2009). Stochastic dynamics of structures. John Wiley & Sons.

    Book  MATH  Google Scholar 

  • Li, X. Z., Zhu, Y., & **, Z. B. (2016). Nonstationary random vibration performance of train-bridge coupling system with vertical track irregularity. Shock and Vibration, 2016, 1–19.

    Article  Google Scholar 

  • Lin, J. H. (1992). A fast CQC algorithm of PSD matrices for random seismic responses. Computers & Structures, 44(3), 683–687.

    Article  Google Scholar 

  • Oliveira, C. S., Hao, H., & Penzien, J. (1991). Ground motion modeling for multiple-input structural analysis. Structural Safety, 10, 79–93.

    Article  Google Scholar 

  • O’Rourke, M. J., Bloom, M. C., & Dobry, R. (1982). Apparent propagation velocity of body waves. Earthquake Engineering & Structural Dynamics, 10, 283–294.

    Article  Google Scholar 

  • Preumont, A. (1980). A method for the generation of artificial earthquake accelerograms. Nuclear Engineering and Design, 59, 357–368.

    Article  Google Scholar 

  • Ramadan, O. M. O., Mehanny, S. S. F., & Kotb, A. A. M. (2020). Assessment of seismic vulnerability of continuous bridges considering soil-structure interaction and wave passage effects. Engineering Structures, 206.

  • To, C. W. S. (1986). Response statistics of discretized structures to non-stationary random excitation. Journal of Sound and Vibration, 105, 217–231.

    Article  Google Scholar 

  • Wang, H., Li, J., Tao, T., Wang, C., & Li, A. (2015). Influence of apparent wave velocity on seismic performance of a super-long-span triple-tower suspension bridge. Advances in Mechanical Engineering, 7(6).

  • **a, H., Han, Y., Zhang, N., & Guo, W. W. (2006). Dynamic analysis of train–bridge system subjected to non-uniform seismic excitations. Earthquake Engineering & Structural Dynamics, 35(12), 1563–1579.

    Article  Google Scholar 

  • **a, H., Zhang, N., & Guo, W. W. (2018). Dynamic interaction of train-bridge systems in high-speed railways theory and applications. Bei**g Jiaotong University Press.

  • Xu, L., & Zhai, W. M. (2017). Stochastic analysis model for vehicle-track coupled systems subject to earthquakes and track random irregularities. Journal of Sound and Vibration, 407, 209–225.

    Article  Google Scholar 

  • Yang, C. Y. (1986). Random vibration of structures. Wiley.

    Google Scholar 

  • Yang, X., Wang, H., & **, X. (2016). Numerical analysis of a train-bridge system subjected to earthquake and running safety evaluation of moving train. Shock and Vibration, 2016, 1–15.

    Google Scholar 

  • Yang, Y. B., Yau, J. D., & Wu, Y. S. (2004). Vehicle–bridge interaction dynamics with applications to high-speed railways. World Scientific.

    Book  Google Scholar 

  • Zeng, Q., & Dimitrakopoulos, E. G. (2016). Seismic response analysis of an interacting curved bridge-train system under frequent earthquakes. Earthquake Engineering & Structural Dynamics, 45(7), 1129–1148.

    Article  Google Scholar 

  • Zeng, Z. P., Zhao, Y. G., Xu, W. T., Yu, Z. W., Chen, L. K., & Lou, P. (2015). Random vibration analysis of train–bridge under track irregularities and traveling seismic waves using train–slab track–bridge interaction model. Journal of Sound and Vibration, 342, 22–43.

    Article  Google Scholar 

  • Zhang, Y. H., Li, Q. S., Lin, J. H., & Williams, F. W. (2009). Random vibration analysis of long-span structures subjected to spatially varying ground motions. Soil Dynamics and Earthquake Engineering, 29(4), 620–629.

    Article  Google Scholar 

  • Zhang, Z. C., Zhang, Y. H., Lin, J. H., Zhao, Y., Howson, W. P., & Williams, F. W. (2011). Random vibration of a train traversing a bridge subjected to traveling seismic waves. Engineering Structures, 33(12), 3546–3558.

    Article  Google Scholar 

  • Zhu, D. Y., Zhang, Y. H., Kennedy, D., & Williams, F. W. (2014). Stochastic vibration of the vehicle–bridge system subject to non-uniform ground motions. Vehicle System Dynamics, 52(3), 410–428.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Ho Choi.

Ethics declarations

Conflict of interest

There are no potential conflicts of interest to report.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Components in Eq. (32)

Appendix: Components in Eq. (32)

$${\mathbf{X}}_{vb} = \left[ {\begin{array}{*{20}c} {{\mathbf{u}}_{v} } & {{\mathbf{q}}_{r} } & {{\mathbf{q}}_{b} } \\ \end{array} } \right]^{{\text{T}}} ;\quad {\dot{\mathbf{X}}}_{vb} = \left[ {\begin{array}{*{20}c} {{\dot{\mathbf{u}}}_{v} } & {{\dot{\mathbf{q}}}_{r} } & {{\dot{\mathbf{q}}}_{b} } \\ \end{array} } \right]^{{\text{T}}} ;\quad {\mathbf{\ddot{X}}}_{vb} = \left[ {\begin{array}{*{20}c} {{\mathbf{\ddot{u}}}_{v} } & {{\mathbf{\ddot{q}}}_{r} } & {{\mathbf{\ddot{q}}}_{b} } \\ \end{array} } \right]^{{\text{T}}} ;$$
(a.1)
$${\mathbf{M}}_{svb} = {\mathbf{M}}_{vbs}^{{\text{T}}} = \left[ {\begin{array}{*{20}c} {\mathbf{0}} & {\mathbf{0}} & {{\mathbf{M}}_{sb} {{\varvec{\Phi}}}_{b} } \\ \end{array} } \right];\quad$$
(a.2)
$${\mathbf{C}}_{svb} = {\mathbf{C}}_{vbs}^{{\text{T}}} = \left[ {\begin{array}{*{20}c} {\mathbf{0}} & {\mathbf{0}} & {{\mathbf{C}}_{sb} {{\varvec{\Phi}}}_{b} } \\ \end{array} } \right];$$
(a.3)
$${\mathbf{K}}_{svb} = {\mathbf{K}}_{vbs}^{{\text{T}}} = \left[ {\begin{array}{*{20}c} {\mathbf{0}} & {\mathbf{0}} & {{\mathbf{K}}_{sb} {{\varvec{\Phi}}}_{b} } \\ \end{array} } \right];$$
(a.4)
$${\mathbf{M^{\prime}}}_{vb} = diag\left[ {\begin{array}{*{20}c} {{\mathbf{M}}_{vv} } & {{{\varvec{\Phi}}}_{r}^{{\text{T}}} {\mathbf{M}}_{rr} {{\varvec{\Phi}}}_{r} + {{\varvec{\Phi}}}_{r}^{{\text{T}}} {\mathbf{N}}^{{\text{T}}} {{\varvec{\Gamma}}}^{ - 1} {\mathbf{M}}_{ww} {\mathbf{\Gamma N\Phi }}_{r} } & {{{\varvec{\Phi}}}_{b}^{{\text{T}}} {\mathbf{M}}_{bb} {{\varvec{\Phi}}}_{b} } \\ \end{array} } \right];\quad$$
(a.5)
$$\begin{gathered} {\mathbf{C^{\prime}}}_{vb} = \left[ {\begin{array}{*{20}c} {{\mathbf{C}}_{vv} } & {\mathbf{0}} & {\mathbf{0}} \\ {\mathbf{0}} & {{{\varvec{\Phi}}}_{r}^{{\text{T}}} {\mathbf{C}}_{rr} {{\varvec{\Phi}}}_{r} } & {{{\varvec{\Phi}}}_{r}^{{\text{T}}} {\mathbf{C}}_{rb} {{\varvec{\Phi}}}_{b} } \\ {\mathbf{0}} & {{{\varvec{\Phi}}}_{b}^{{\text{T}}} {\mathbf{C}}_{br} {{\varvec{\Phi}}}_{r} } & {{{\varvec{\Phi}}}_{b}^{{\text{T}}} {\mathbf{C}}_{bb} {{\varvec{\Phi}}}_{b} } \\ \end{array} } \right] \hfill \\ + \left[ {\begin{array}{*{20}c} {\mathbf{0}} & {{\mathbf{C}}_{vw} {\mathbf{\Gamma N\Phi }}_{r} } & {\mathbf{0}} \\ {{{\varvec{\Phi}}}_{r}^{{\text{T}}} {\mathbf{N}}^{{\text{T}}} {{\varvec{\Gamma}}}^{ - 1} {\mathbf{C}}_{wv} } & {{{\varvec{\Phi}}}_{r}^{{\text{T}}} {\mathbf{N}}^{{\text{T}}} {{\varvec{\Gamma}}}^{ - 1} \left( {2V_{t} {\mathbf{M}}_{ww} {\mathbf{\Gamma N}}_{,x} + {\mathbf{C}}_{ww} {\mathbf{\Gamma N}}} \right){{\varvec{\Phi}}}_{r} } & {\mathbf{0}} \\ {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} \\ \end{array} } \right];\quad \hfill \\ \end{gathered}$$
(a.6)
$$\begin{gathered} {\mathbf{K^{\prime}}}_{vb} = \left[ {\begin{array}{*{20}c} {{\mathbf{K}}_{vv} } & {\mathbf{0}} & {\mathbf{0}} \\ {\mathbf{0}} & {{{\varvec{\Phi}}}_{r}^{{\text{T}}} {\mathbf{K}}_{rr} {{\varvec{\Phi}}}_{r} } & {{{\varvec{\Phi}}}_{r}^{{\text{T}}} {\mathbf{K}}_{rb} {{\varvec{\Phi}}}_{b} } \\ {\mathbf{0}} & {{{\varvec{\Phi}}}_{b}^{{\text{T}}} {\mathbf{K}}_{br} {{\varvec{\Phi}}}_{r} } & {{{\varvec{\Phi}}}_{b}^{{\text{T}}} {\mathbf{K}}_{bb} {{\varvec{\Phi}}}_{b} } \\ \end{array} } \right] \hfill \\ + \left[ {\begin{array}{*{20}c} {\mathbf{0}} & {\left( {V_{t} {\mathbf{C}}_{vw} {\mathbf{\Gamma N}}_{,x} + {\mathbf{K}}_{vw} {\mathbf{\Gamma N}}} \right){{\varvec{\Phi}}}_{r} } & {\mathbf{0}} \\ {{{\varvec{\Phi}}}_{r}^{{\text{T}}} {\mathbf{N}}^{{\text{T}}} {{\varvec{\Gamma}}}^{ - 1} {\mathbf{K}}_{wv} } & {{{\varvec{\Phi}}}_{r}^{{\text{T}}} {\mathbf{N}}^{{\text{T}}} {{\varvec{\Gamma}}}^{ - 1} \left( {V_{t}^{2} {\mathbf{M}}_{ww} {\mathbf{\Gamma N}}_{,xx} + V_{t} {\mathbf{C}}_{ww} {\mathbf{\Gamma N}}_{,x} + {\mathbf{K}}_{ww} {\mathbf{\Gamma N}}} \right){{\varvec{\Phi}}}_{r} } & {\mathbf{0}} \\ {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} \\ \end{array} } \right]; \hfill \\ \end{gathered}$$
(a.7)
$$\begin{gathered} {\mathbf{T}} = \left[ {\begin{array}{*{20}c} {\mathbf{I}} & {\mathbf{0}} & {\mathbf{0}} \\ {\mathbf{0}} & {{{\varvec{\Phi}}}_{r}^{{\text{T}}} {\mathbf{N}}^{{\text{T}}} } & {\mathbf{0}} \\ {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} \\ \end{array} } \right];\quad \hfill \\ {\mathbf{R}} = \left[ {\begin{array}{*{20}c} {\mathbf{0}} & {{\mathbf{C}}_{vw} } & {{\mathbf{K}}_{vw} } \\ {{{\varvec{\Gamma}}}^{ - 1} {\mathbf{M}}_{ww} } & {{{\varvec{\Gamma}}}^{ - 1} {\mathbf{C}}_{ww} } & {{{\varvec{\Gamma}}}^{ - 1} {\mathbf{K}}_{ww} } \\ {\mathbf{0}} & {\mathbf{0}} & {\mathbf{0}} \\ \end{array} } \right]; \hfill \\ \end{gathered}$$
(a.8)
$$\begin{gathered} {\mathbf{F}}_{sw} = \left[ {\begin{array}{*{20}c} {\mathbf{0}} & {{{\varvec{\Gamma}}}^{ - 1} {\mathbf{F}}_{w} } & {\mathbf{0}} \\ \end{array} } \right]^{{\text{T}}} ;\quad \hfill \\ {\mathbf{F}}_{r} = \left[ {\begin{array}{*{20}c} {{\mathbf{\ddot{r}}}} & {{\dot{\mathbf{r}}}} & {\mathbf{r}} \\ \end{array} } \right]^{{\text{T}}} \hfill \\ \end{gathered}$$
(a.9)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, C., Choi, DH. Random Vibration Analysis of a Vehicle–Bridge Interaction System Subjected to Traveling Seismic Ground Motions Using Pseudo-excitation Method. Int J Steel Struct 22, 1669–1685 (2022). https://doi.org/10.1007/s13296-022-00636-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13296-022-00636-9

Keywords

Navigation